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This chapter
● Transport Layer Security (TLS), Secure Sockets Layer (SSL)
● TLS Handshake
● Key exchange mechanisms
● Authentication and X.509 certificates
● TLS extensions
● Server Name Indication
● Attacks against TLS

○ CRIME: Avoid compression
○ Heartbleed: OpenSSL implementation issue

● Signing Oracle
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Threat model
● The Internet is an open network of interconnected systems with varying 

legislations
● Data transmission happens over potentially insecure/eavesdropping nodes
● Many applications require the transmission of sensitive data such as 

credentials (passwords, secrets, credit card information, private information)

● Threat model
● An attacker controls the whole network communication
● Eavesdrop, modify and inject communication packets

● Imagine the worst case situation
An attacker who controls the local network, all Internet routes, and DNS 
resolution
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Goals of Transport Layer Security (TLS)

● For two communicating peers, Transport Layer Security (TLS) provides
1. Privacy and
2. Data integrity

● Security is provided to any protocol that is spoken on top of a TLS channel
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Network protocol layers
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Network protocol layers and TLS
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TLS: Key Concepts 

● Symmetric cryptography
○ Used to encrypt the data transmitted
○ The connection is private

● Asymmetric cryptography
○ Used to authenticate the identity of the communicating parties
○ The connecting parties “know” and trust each other

● Message authentication code
○ Used to ensure integrity
○ Nobody can modify the transmitted messages without being noticed
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What is TLS?
● TLS is the de facto standard for secure communication in TCP/IP 

networks
● Predecessor was named Secure Sockets Layer (SSL)
● TLS can be used with many protocols, often in one of two ways

○ A separate TCP port is used to offer a service where the application layer protocol (e.g. 
IMAP) is spoken on top of a TLS layer
■ TCP port 143 for plaintext IMAP
■ TCP port 993 for IMAP over TLS (IMAPS)

○ TLS is started during an existing TCP connection of the application layer protocol
■ Often called STARTTLS (SMTP, POP3, IMAP and other protocols)

● Most recent version (TLS 1.3) is in draft state
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The history of TLS
● November 1993: Release of Mosaic, the first wide-spread web browser
● SSL 1.0 – Internal Netscape design, 1994

○ “This version circulated only internally (i.e., inside Netscape Communications), since it had 
several shortcomings and flaws.”

○ Several weaknesses

● SSL 2.0 – Netscape, Nov 1994
○ Several weaknesses

● SSL 3.0 – Netscape and Paul Kocher, Nov 1996
● TLS 1.0 – Internet standard, Jan 1999

○ Based on SSL 3.0, but not interoperable (different cryptographic algorithms)
○ Announces itself as SSL “3.1”

● TLS 1.1 – Apr 2006
● TLS 1.2 – Aug 2008
● TLS 1.3 – maybe 2018, possibly later 9



Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

TLS Basics
● TLS consists of two (ordered) 

protocols

● Handshake protocol
○ Uses public-key cryptography to 

establish several shared secret 
keys between the client and the 
server

● Record protocol
○ Uses the secret keys ( handshake 

protocol) to protect confidentiality, 
integrity, and authenticity of data 
exchanges between client and 
server 10
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TLS Record Protocol

● The handshake is used to derive a shared secret

● The TLS record protocol takes care of
○ Confidentiality: Symmetric encryption with a first secret key (agreed on during the 

handshake)
○ Integrity: HMAC with a second secret key (agreed upon during the handshake)
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TLS Record Protocol: Sending side
● Fragment the data into manageable blocks
● Optionally compresses the data
● Apply a MAC
● Encrypt
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TLS Record Protocol: Receiving side
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● Decrypt
● Verify (HMAC)
● Decompress
● Reassemble



TLS 1.2 Record Protocol
● Order of integrity protection and encryption
● MAC-then-encrypt (used in TLS)

○ Guarantees integrity of the plaintext
○ The MAC is encrypted
○ Needs to decrypt on the receiver side before MAC verification
○ Susceptible to attacks (POODLE)

● Encrypt-then-MAC
○ Provides integrity over plaintext and 

ciphertext
○ Verify the MAC and only then

decrypt (does not feed spoofed 
ciphertext into the decryption step)

● TLS 1.3: Upcoming versions will likely use a different scheme: 
Authenticated Encryption (simultaneously provides confidentiality, 
integrity, and authenticity of the data) 14



TLS Record Protocol: MAC-then-encrypt
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TLS Record Format
● First byte is the content type and 

identifies the record layer 
protocol type
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TLS Record Format
● Two bytes of version numbers

○ Major and minor version

● Two bytes of total length 
information (Protocol message + 
MAC + Padding) 17



TLS Handshake Protocol
● Operates on top of TLS records
● Establish the cryptographic parameters of the 

session
○ Agree on a protocol version
○ Select cryptographic algorithms
○ Authenticate the communicating peers (optional, but 

very often used)
○ Use public-key encryption techniques to generate 

shared secrets

● Each party may implement a specific subset of 
cryptographic operations

● The goal is to agree on the strongest possible 
crypto parameters that both parties support
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TLS Handshake Protocol

● Exchange hello messages to agree on algorithms, exchange random 
values, and check for session resumption

● Exchange the necessary cryptographic parameters to allow the client and 
server to agree on a premaster secret

● Exchange certificates and cryptographic information to allow the client and 
server to authenticate themselves

● Generate a master secret from the premaster secret and exchanged 
random values

● Provide security parameters to the record layer
● Allow the client and server to verify that their peer has calculated the same 

security parameters and that the handshake occurred without tampering 
by an attacker
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TLS Handshake: Premaster and master secret
● Premaster secret

○ Input that helps to derive the master secret
○ Detach the master secret from contents that is transmitted between the client and the 

server

● Master secret
○ 48-byte secret byte sequence
○ Used on both sides to derive keying material for the record layer

■ the key for symmetric encryption
■ the initialization vectors (IV) for symmetric encryption
■ the HMAC for message integrity

○ Computed by a function of the premaster secret and random nonces (depends on the key 
exchange algorithm)

○ RSA: Permutation of the client-chosen premaster secret (the premaster secret is sent 
encrypted with the server’s public key)

○ DH: Client and server derive the master secret from the DH key exchange result
20



TLS Handshake
● Consists of up to 13 messages, some of which 

are optional (marked orange)
● Divided into 4 phases

1. Establish security capabilities
2. Server authentication and key exchange
3. Client authentication and key exchange
4. Finish
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TLS Handshake: Phase 1
● Establish security capabilities

○ Client and server generate nonces
○ Protocol Version, Session ID, Cipher Suite, and 

Compression Method

● ClientHello 
○ Highest supported TLS version
○ Client-generated nonce
○ Session ID (if continuation) or zero

● ServerHello
○ Chosen TLS version
○ Server-generated nonce
○ Session ID (copied from client) or zero
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TLS Handshake: Phase 2
● Server authentication and key exchange
● ServerCertificate

● Authenticate to the client using an X509v3 certificate
● Possibly send intermediate certificates

● ServerKeyExchange
● Diffie-Hellman: Server parameters
● RSA: no ServerKeyExchange parameters required
● PSK: identity hint

● ClientCertificateRequest
● If present, ask the client to present its client certificate

⇒ mutual authentication (both parties)

● ServerHelloDone
● “The hello-message phase of the handshake is 

complete”
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TLS Handshake: Phase 3
● Client authentication and key exchange
● ClientCertificate

○ Send an X509v3 certificate, if the server asked for it 
with a ClientCertificateRequest in phase 2

● ClientKeyExchange
○ Second part of the key exchange
○ Diffie-Hellman: Client parameters
○ RSA: 48-byte premaster secret, encrypted with the 

server’s public key
○ Both parties now have enough info to generate the 

master secret (and the session keys)

● CertificateVerify
○ Client proves access to the ClientCertificate’s private 

key by signing the handshake messages
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TLS Handshake: Phase 4
● Handshake completed
● ChangeCipherSpec (sent by the client)

○ Switch to the agreed cipher
○ From now on, the messages from the client will be 

encrypted and authenticated

● Finished (sent by the client)
○ Contains a hash and MAC over the previous 

handshake messages + "client finished"

● ChangeCipherSpec (sent by the server)
○ Switch to the agree cipher
○ From now on, the messages from the server will also 

be encrypted and authenticated

● Finished  (sent by the server)
○ Contains a hash and MAC over the previous 

handshake messages + "server finished"
25
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TLS: Cipher suites
● ClientHello and ServerHello announce which cipher suites the 

implementation supports and which is chosen for the session
● A cipher suite comprises of

○ a key exchange algorithm
○ an authentication algorithm
○ a symmetric encryption algorithm
○ and a Message Authentication Code (MAC) algorithm

● Naming scheme
○ TLS_RSA_WITH_3DES_EDE_CBC_SHA

■ RSA specifies the key exchange algorithm and the authentication algorithm
■ 3DES_EDE_CBC specifies the block cipher to encrypt messages
■ SHA indicates the message authentication algorithm
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TLS: Cipher suites (www.internet-sicherheit.de)
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ECDHE: Elliptic Curve 
Diffie-Hellman Key Exchange

RSA: RSA authentication

AES256 with GCM: 
Symmetric encryption with 
authentication

SHA384: PRF/hash function



TLS: Considerations for key exchange algorithms
● Various key exchange algorithms can be chosen from

○ Static RSA key exchange
○ Transient RSA key exchange
○ Diffie-Hellman key exchange

○ Pre shared keys (PSK) (not really a key exchange)

● Static RSA key exchange may not provide perfect forward secrecy (PFS)
● DH key exchange however does provide PFS
● Transient RSA key exchange is supported in TLS, but rarely used
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TLS: Considerations for pre-shared keys
● Usually, TLS uses public key certificates
● But: Various forms of pre-shared key protocols exist in TLS (RFC4279)

○ Plain PSK
○ DHE-PSK

■ Protect against dictionary attacks by passive eavesdroppers (but not active 
attackers) and also provide Perfect Forward Secrecy (PFS)

○ RSA-PSK
■ Combine public-key-based authentication of the server (using RSA and certificates) 

with mutual authentication using a PSK
■ TLS-RSA-PSK is used in the web authentication of the German electronic ID

● Advantages
○ PSK can avoid the need for public key operations
○ Bind the TLS connection to a previously established session (over a different protocol)
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TLS-RSA-PSK: German electronic ID
● One application of TLS-RSA-PSK is the web authentication protocols for 

the German electronic ID (BSI-TR-03124 and BSI-TR-03112)
● The TLS session is bound to a web authentication session using the PSK

○ ServerKeyExchange

■ Transmits the session identifier as the 
psk_identity hint field

○ ClientKeyExchange

■ Transmits the RSA-encrypted PSK 
(the premaster secret)
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TLS-RSA-PSK: German electronic ID
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● The PSK and the identity hint are exchanged beforehand
○ Identity hint: SessionIdentifier
○ PSK: PathSecurity-Parameters <PSK>...</PSK>



Authentication in TLS
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TLS authentication
● TLS serves two goals

○ Privacy (discussed in detail until now)
○ Authentication of the peers

● For authentication, X509 certificates 
and a public key infrastructure is used

● Two requirements
○ Authenticate a server (and optionally a client)
○ Obtain the server’s (and optionally the client’s) 

public key
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X.509 Authentication Service and Certificate
● Internet standard that defines 

○ the format for public key certificates
○ revocation lists
○ certification path validation algorithm

● X.509 is used in
○ IPSec
○ TLS
○ electronic signatures

● Standardized by ITU-T
● Based on the ASN-1 encoding scheme

34



X.509 certificate example (1/2)
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Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=BE, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation CA - SHA256 - G2
        Validity
            Not Before: Nov 21 08:00:00 2016 GMT
            Not After : Nov 22 07:59:59 2017 GMT
        Subject: C=US, ST=California, L=San Francisco, O=Wikimedia Foundation, Inc., CN=*.wikipedia.org
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub: 
                    04:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:
                    af:c0:02:ea:81:cb:65:b9:fd:0c:6d:46:5b:c9:1e:
                    ed:b2:ac:2a:1b:4a:ec:80:7b:e7:1a:51:e0:df:f7:
                    c7:4a:20:7b:91:4b:20:07:21:ce:cf:68:65:8c:c6:
                    9d:3b:ef:d5:c1
                ASN1 OID: prime256v1
                NIST CURVE: P-256

Who issued the certificate?

Who is the certificate holder?
Wikipedia (Common Name)

When is the certificate valid?

What is the public key?



X.509 certificate example (2/2)
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        X509v3 extensions:
            X509v3 Key Usage: critical
                Digital Signature, Key Agreement
            Authority Information Access: 
                CA Issuers - URI:http://secure.globalsign.com/cacert/gsorganizationvalsha2g2r1.crt
                OCSP - URI:http://ocsp2.globalsign.com/gsorganizationvalsha2g2
            X509v3 Certificate Policies: 
                Policy: 1.3.6.1.4.1.4146.1.20
                  CPS: https://www.globalsign.com/repository/
                Policy: 2.23.140.1.2.2
            X509v3 Basic Constraints: 
                CA:FALSE
            X509v3 CRL Distribution Points: 
                Full Name:
                  URI:http://crl.globalsign.com/gs/gsorganizationvalsha2g2.crl
            X509v3 Subject Alternative Name: 
                DNS:*.wikipedia.org, DNS:*.m.mediawiki.org, DNS:*.m.wikibooks.org, …,  DNS:wikipedia.org
            X509v3 Extended Key Usage: 
                TLS Web Server Authentication, TLS Web Client Authentication
            X509v3 Subject Key Identifier: 
                28:2A:26:2A:57:8B:3B:CE:B4:D6:AB:54:EF:D7:38:21:2C:49:5C:36
            X509v3 Authority Key Identifier: 
                keyid:96:DE:61:F1:BD:1C:16:29:53:1C:C0:CC:7D:3B:83:00:40:E6:1A:7C
    Signature Algorithm: sha256WithRSAEncryption
         8b:c3:ed:d1:9d:39:6f:af:40:72:bd:1e:18:5e:30:54:23:35:
         ...



X.509 Common Name
● The Common Name field is important to identify the authenticated peer
● Two variants

○ Specific host name: www.google.com Only www.google.com, nobody else
○ Wildcard pattern: *.google.com Any host whose name ends in .google.com

● Browsers interpret the star (‘*’) differently
○ Firefox 3: ‘*’ matches any character, including the dot ‘.’

■ www.subdomain.example.com matches *.example.com
○ MS Internet Explorer 7: ‘*’ does not match the dot

■ www.subdomain.example.com will not match *.example.com

● The Subject Alternative Name extension for X.509 v3 can be used for a 
certificate that is used by more than just one hostname
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Certificate verification chains
● The public key infrastructure (PKI) allows to build a chain from trusted root 

entities to the issued certificate
● The root entities must be available to a the verifier

○ Typically a set of root CA certificates that are built into the OS or the browser

● Various levels of intermediate certificate entities
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TLS root CA certificates

39



TLS root CA certificates
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Certificate verification chain: Example
● The server’s certificate was issued and signed by an intermediate 

certificate authority (DigiCert SHA2 High Assurance Server CA)
● The intermediate CA certificate was signed by the root CA (DigiCert High 

Assurance EV Root CA)

41

Subject: DigiCert High Assurance EV Root CA
Issuer: DigiCert High Assurance EV Root CA

Subject: DigiCert SHA2 High Assurance Server CA
Issuer: DigiCert High Assurance EV Root CA

Subject: CN=*.wikipedia.org
Issuer: DigiCert SHA2 High Assurance Server CA

Subject: CN=*.example.com
Issuer: DigiCert SHA2 High Assurance Server CA

self-signed

signed by

signed by



Certificate verification chain: Example
● The server’s certificate was issued and signed by an intermediate 

certificate authority (DigiCert SHA2 High Assurance Server CA)
● The intermediate CA certificate was signed by the root CA (DigiCert High 

Assurance EV Root CA)

42

Subject: DigiCert High Assurance EV Root CA
Issuer: DigiCert High Assurance EV Root CA

Subject: DigiCert SHA2 High Assurance Server CA
Issuer: DigiCert High Assurance EV Root CA

Subject: CN=*.wikipedia.org
Issuer: DigiCert SHA2 High Assurance Server CA

Subject: CN=*.example.com
Issuer: DigiCert SHA2 High Assurance Server CA

self-signed

signed by

signed by

Operating System or Browser

TLS ServerCertificate message



Certificate Revocation, OCSP
● What if a certificate gets compromised?
● Two possibilities

○ It ages out (has a defined end date for the validity)
○ It can be revoked

● Revocation requires that the verifying parties query a service
○ Certificate Revocation List (CRL) can be downloaded
○ Online Certificate Status Protocol (OCSP) is a commonly used protocol to check for 

revocation of a certificate

● How does the verifier know who to ask?
○ The OCSP endpoint and/or the CRL endpoint is encoded in the certificate

43

X509v3 extensions:
            ...
            Authority Information Access: 
                OCSP - URI:http://ocsp2.globalsign.com/gsorganizationvalsha2g2
            ...
            X509v3 CRL Distribution Points: 
                Full Name:
                  URI:http://crl.globalsign.com/gs/gsorganizationvalsha2g2.crl



Extended Validation (EV) Certificates
● Extended Validation (EV)

○ Stricter issuance and verification policies
○ Protects users against valid certificates 

of similar-looking (phishing) domains 

● Similar-looking domains should not 
be able to get EV certificates
○ E.g., deutcshe-bank.com

● Requirements
○ Legal identity as well as the operational 

and physical presence of website owner
○ Applicant is the domain name owner or 

has exclusive control over domain
○ Confirm the identity and authority of the 

individuals acting for the website owner

● No wildcard pattern allowed
44



TLS: Session IDs

● The TLS handshake is expensive and does not scale well
● The concept of a session describes a context (including the chosen cipher 

suite) which can be reused across multiple TLS connections
● The client can provide a session ID to signal the server that it would like to 

continue an existing session
● Less effort to resume a session or add parallel connections (e.g., in case 

of HTTPS where multiple connections to the same target are often 
observed)
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TLS 1.3 (in draft)
● Remove problematic aspects from older TLS versions

○ Compression
○ RSA key exchange (use DH instead)
○ MAC-then-Encrypt (use Authenticated Encryption instead)
○ No longer allows CBC mode of operation (use GCM instead)
○ Renegotiation
○ Weak ciphers (export ciphers): RC4, MD5, SHA1

● Avoid downgrade attacks
○ Sign elements of the handshake (including the list of supported cipher suites)
○ MITM can not change the list of cipher suites (without breaking the signature)

● Speed up the handshake
○ TLS 1.2: 2 full roundtrip messages
○ TLS 1.3: Make assumptions on supported cipher suites and send key derivation material 

up front (“just in case you also support AES-GCM, here is some key derivation material”)
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HTTPS: TLS with HTTP
● Establish a TLS connection
● Transmit HTTP messages over the TLS channel
● Require that the host name equals the server certificate’s common name
● Require a server certificate with a valid certificate chain that originates in a 

certificate authority (CA) certificate
● Require valid issue timestamp

○ Current date and time > certificate issue date and time
○ Current date and time < certificate validity end date and time

● Enforce certain minimum cipher suites (do not fall back to NULL cipher 
suite from old SSL/TLS versions)

47



TLS extensions: Server Name Indication
● Problem: The TLS connection is established before the first application 

layer message reaches the destination
● Some protocols bind the DNS resolution result to a view on the application
● For example, HTTP has the Host header

○ It specifies the host name that was used to resolve the IP address of the destination
○ It controls which view (virtual host) the server uses to deliver responses
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TLS example traffic

49



TLS example: Connection to Google APIs

The following example shows how a TLS connection is established between a 
Chrome browser (version 62) and the host safebrowsing.googleapis.com.
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TLS example: ClientHello
● TLS record has version TLS 1.0
● ClientHello signals the client can 

speak TLS 1.2
● Random: client-generated nonce
● Offers 14 cipher suites
● Offers 1 compression algorithm
● Supports 13 TLS extensions 

including
○ Server Name Indication (server_name)
○ Elliptic curve point formats
○ Application layer protocol negotiation 

(Signals that the client wants to speak 
http/1.1)
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TLS example: ClientHello (SNI)
● Supports 13 TLS extensions 

including
○ Server Name Indication (server_name)

safebrowsing.googleapis.com

○ Elliptic curve point formats
○ Application layer protocol negotiation 

(Signals that the client wants to speak 
http/1.1)
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TLS example: ClientHello: Cipher suites
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● Offers 14 cipher suites
● Each cipher suite is encoded 

in two bytes
● The total length is 14*2 

= 28 bytes
● The list is sorted by 

cryptographic strength



TLS example: ServerHello

● TLS record has version TLS 1.2
● ServerHello signals TLS 1.2 was 

chosen
● Random: server-generated nonce
● Chooses cipher suite
● No compression
● Does not set a session ID
● Responds to 7 TLS extensions
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TLS example: Server certificate
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TLS example: Server Key Exchange
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TLS example: Server Hello Done 
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TLS example: Client Key Exchange
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TLS example: Change Cipher Spec
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TLS example: Finished
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Attacks against TLS
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Weakness in SSL 1.0 (1/2)

62

● A chooses session key, B then authenticates A
○ Assumption: A and B know each other’s public keys or can obtain certificates
○ A sends B a session key KAB encrypted under B’s public key
○ B challenges A with random nonce NB encrypted under session key
○ A authenticates against B by reflecting a signed version of the decrypted nonce

{ } Encryption
[ ] Signature



Weakness in SSL 1.0 (2/2)

63

● Attack: B can impersonate A in a session with C
○ A will blindly sign any nonce without binding result to identifier
○ C challenges B with a nonce, but B will forward this challenge to A
○ A can replay nonce signed by A to other session with C

● Fix: Include identifiers (A, B) and a nonce chosen by A (NA) before signing
● Lesson learned: Do not include signing oracles. Bind names before signing.



Attacks against TLS/SSL: Timeline

64
Source: Ruben Niederhagen, Attacks on TLS/SSL, Timeline



Man-in-the-middle attack against TLS
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Man-in-the-middle attack against TLS
● The end user and the server do not know each other beforehand
● The attacker places herself in the middle between the victim and the target

⇒ hence the name of the attack

● What prevents a successful man-in-the-middle attack?
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Man-in-the-middle attack against TLS
● The end user and the server do not know each other beforehand
● The attacker places herself in the middle between the victim and the target

⇒ hence the name of the attack

● What prevents a successful man-in-the-middle attack?
○ The authentication via certificates!
○ Assuming that the involved certificates are valid
○ No compromised CA
○ No attacker-controlled CA certificate on the victim system
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Popular attacks against TLS
● Padding Oracle Attacks

○ Initially discovered in 2002, practical attack shown in 2013 “Lucky 13”: Timing side channel 
attack against ciphers in CBC mode of operation, Royal Holloway London

○ Underlying problem: MAC-then-encrypt
○ POODLE attack in 2014: Vulnerability in SSL 3.0 (1999)
○ ⇒ Use Encrypt-then-MAC or even better: Use Authenticated Encryption ciphers/modes

● BEAST (Browser Exploit Against SSL/TLS)
○ Described in 2004, practical attack shown in 2011
○ Predictable initialization vectors (IV) in SSL 3.0 and TLS 1.0
○ Chosen-plaintext attack can be used to derive parts of the plaintext
○ ⇒ Randomize IVs

● Compression attacks
○ Compression is a bad idea in TLS
○ Redundancy in the plaintext will compress better, hence the ciphertext will be shorter
○ Practical attack shown in 2012 as Compression Ratio Info-leak Made Easy (CRIME)
○ ⇒ No more compression in TLS 1.3 68



CRIME: Compression Ratio Info-leak Made Easy (2012)
● Leverages compression side effects to break TLS
● Idea: Try to produce an exact copy of an initial secret value in the same 

packet
● Typical secret of interest: the Cookie header
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GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...



CRIME: Compression Ratio Info-leak Made Easy (2012)
● Leverages compression side effects to break TLS
● Idea: Try to produce an exact copy of an initial secret value in the same 

packet
● Typical secret of interest: the Cookie header
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GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...
Cookie: session=XdH9!7sLf6

GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...
Cookie: session=s3cr3t_xyz

compressed length=k

compressed length=m

m < k



CRIME: Compression Ratio Info-leak Made Easy (2012)
● Mitigation

○ Disable compression!
○ TLS 1.3 will no longer allow compression
○ Prevent attacker-controlled payload in the victim’s context

■ Class of attacks: cross-site request forgery (CSRF)

● BREACH: Browser Reconnaissance and Exfiltration via Adaptive 
Compression of Hypertext, 2013

● BREACH is an attack similar to CRIME
○ The attack leverages HTTP compression instead of TLS compression
○ Likely also works with TLS 1.3
○ Again: disable compression
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TLS attack: Compromised Root CA
● If a root CA is compromised, the security of the entire system is at stake

● Impact of compromised root CA
○ A root CA can issue certificates for every domain
○ A root CA can issue code signing certificates for programs

● Significant incidents
○ Comodo, 2011: Compromised CA
○ DigiNotar, 2011: Compromised CA issued certificates to Iranian actors
○ Trustwave subordinate, 2012: Used for interception of TLS connections
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Compromised Root CA: Comodo
● Comodo accepts certificate orders submitted through resellers

○ Reseller uses a program to authenticate to Comodo and submit an order with a domain 
name and public key, Comodo automatically issues a certificate for this site

● A hacker broke into instantSSL.it and globalTrust.it resellers, decompiled 
their certificate issuance program, learned the credentials of their reseller 
account and how to use Comodo API
○ username: gtadmin, password: globaltrust

● The hacker wrote his own program for submitting orders and obtaining 
Comodo certificates

● Successfully retrieved certificates for various sites
○ mail.google.com, login.live.com, login.yahoo.com, login.skype.com, addons.mozilla.org
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Compromised Root CA: DigiNotar
● DigiNotar, 2011: Compromised CA issued certificates to Iranian actors

○ PKIoverheid: Dutch national public key infrastructure (PKI)
○ Dutch government took over
○ More than 500 fake certificates signed by DigiNotar found
○ Including a wildcard certificate: *.google.com
○ Likely used for surveillance of Iranian dissidents

● What caused the incident?
○ Questionable security procedures at DigiNotar

■ The audit [...] revealed that DigiNotar had lacked basic security safeguards, 

such as strong passwords, anti-virus protection, and up-to-date software 

patches.

■ Core certificates in a centralized store on a Windows domain
■ Admin-Passwort: "Pr0d@dm1n"  Seriously?!

○ In total, 531 fraudulent certificates issued
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TLS attack: Compromised Root CA
● If a root CA is compromised, the security of the entire system is at stake

● Mitigation thoughts
○ Limit the geographic area/country/language where a root CA may issue certificates
○ Limit the TLD for which certificates may be issued
○ Basically all of these approaches build on an artificial segmentation of the certificate 

name space
○ HTTP Public Key Pinning (HPKP), RFC7469

■ Pin public keys to a website
■ The browser learns these and can compare on subsequent visits
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Podcast on the DigiNotar breach: https://darknetdiaries.com/episode/3/

Public-Key-Pins: max-age=2592000;
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
report-uri="http://example.com/pkp-report" 



TLS attack: Common name parsing issues
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● Problem: A NULL byte in the common name (Marlinspike, 2009)
● Requirements

○ Attacker-controlled site: www.evilsite.com
○ Target site www.paypal.com

● Certificate issuer parses the common name field of an X.509 certificate 
differently than a browser
○ Certificate issuer: Starts parsing from the end
○ Browser: Starts parsing from the start

www.paypal.com\0www.evilsite.com

\0www.evilsite.comwww.paypal.com\0

Certificate issuer
Browsers

http://www.evilsite.com
http://www.paypal.com


TLS attack: Exploiting hash collisions
● The Flame targeted attack malware
● Used in cyber espionage ca. 2010 to 2012
● Signed with a fraudulent intermediate CA certificate that appears to be 

issued by Microsoft
○ The fraudulent certificate is accepted by Windows Update
○ Fake intermediate CA certificate was created using an MD5 chosen-prefix 

collision against an obscure Microsoft Terminal Server Licensing Service 
certificate that was enabled for code signing and still used MD5

● Considered by many as an example of world-class 
applied cryptanalysis
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TLS attack: Exploiting hash collisions
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Source: https://trailofbits.files.wordpress.com/2012/06/flame-md5.pdf



TLS attack: Exploiting hash collisions
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TLS implementation issues
● Implementing cryptography is hard
● Heartbleed bug in OpenSSL, 2014
● The Heartbeat mechanism allows to check whether the 

connection is still alive
● From the RFC:

When a HeartbeatRequest message is received [...], the 

receiver MUST send a corresponding HeartbeatResponse message 

carrying an exact copy of the payload of the received 

HeartbeatRequest.

● The bug consists in not checking the actual length versus 
the announced length

● Buffer over-read vulnerability in the implementation, not in 
the standard
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TLS implementation issues: HEARTBLEED
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TLS implementation issues: HEARTBLEED
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Thank you. Questions?
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