
Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

Internet-Sicherheit A
Transport Layer Security

Prof. Dr. Christian Dietrich
<dietrich@internet-sicherheit.de>

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

This chapter
● Transport Layer Security (TLS), Secure Sockets Layer (SSL)
● TLS Handshake
● Key exchange mechanisms
● Authentication and X.509 certificates
● TLS extensions
● Server Name Indication
● Attacks against TLS

○ CRIME: Avoid compression
○ Heartbleed: OpenSSL implementation issue

● Signing Oracle

2

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

Threat model
● The Internet is an open network of interconnected systems with varying

legislations
● Data transmission happens over potentially insecure/eavesdropping nodes
● Many applications require the transmission of sensitive data such as

credentials (passwords, secrets, credit card information, private information)

● Threat model
● An attacker controls the whole network communication
● Eavesdrop, modify and inject communication packets

● Imagine the worst case situation
An attacker who controls the local network, all Internet routes, and DNS
resolution

3

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

Goals of Transport Layer Security (TLS)

● For two communicating peers, Transport Layer Security (TLS) provides
1. Privacy and
2. Data integrity

● Security is provided to any protocol that is spoken on top of a TLS channel

4

Network protocol layers

5

Application

Transport

Network/Internet

Data link

HTTP, FTP, SMTP, IMAP, SSH

TCP, UDP

IP, ARP, ICMP, IGMP, IPSEC

Ethernet

Network protocol layers and TLS

6

Security

Transport

Network/Internet

Data link

Transport Layer Security

TCP, UDP

IP, ARP, ICMP, IGMP, IPSEC

Ethernet

Application HTTP, FTP, SMTP, IMAP, SSH

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

TLS: Key Concepts

● Symmetric cryptography
○ Used to encrypt the data transmitted
○ The connection is private

● Asymmetric cryptography
○ Used to authenticate the identity of the communicating parties
○ The connecting parties “know” and trust each other

● Message authentication code
○ Used to ensure integrity
○ Nobody can modify the transmitted messages without being noticed

7

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

What is TLS?
● TLS is the de facto standard for secure communication in TCP/IP

networks
● Predecessor was named Secure Sockets Layer (SSL)
● TLS can be used with many protocols, often in one of two ways

○ A separate TCP port is used to offer a service where the application layer protocol (e.g.
IMAP) is spoken on top of a TLS layer
■ TCP port 143 for plaintext IMAP
■ TCP port 993 for IMAP over TLS (IMAPS)

○ TLS is started during an existing TCP connection of the application layer protocol
■ Often called STARTTLS (SMTP, POP3, IMAP and other protocols)

● Most recent version (TLS 1.3) is in draft state

8

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

The history of TLS
● November 1993: Release of Mosaic, the first wide-spread web browser
● SSL 1.0 – Internal Netscape design, 1994

○ “This version circulated only internally (i.e., inside Netscape Communications), since it had
several shortcomings and flaws.”

○ Several weaknesses

● SSL 2.0 – Netscape, Nov 1994
○ Several weaknesses

● SSL 3.0 – Netscape and Paul Kocher, Nov 1996
● TLS 1.0 – Internet standard, Jan 1999

○ Based on SSL 3.0, but not interoperable (different cryptographic algorithms)
○ Announces itself as SSL “3.1”

● TLS 1.1 – Apr 2006
● TLS 1.2 – Aug 2008
● TLS 1.3 – maybe 2018, possibly later 9

Prof. Dr. Christian Dietrich, Westphalian University, Institute for Internet Security

TLS Basics
● TLS consists of two (ordered)

protocols

● Handshake protocol
○ Uses public-key cryptography to

establish several shared secret
keys between the client and the
server

● Record protocol
○ Uses the secret keys (handshake

protocol) to protect confidentiality,
integrity, and authenticity of data
exchanges between client and
server 10

TLS

Transport

Network/Internet

Data link

TLS: Record Protocol

TCP, UDP

IP, ARP, ICMP, IGMP, IPSEC

Ethernet

Application HTTP, FTP, SMTP, IMAP, SSH

TLS: Handshake Protocol

TLS Record Protocol

● The handshake is used to derive a shared secret

● The TLS record protocol takes care of
○ Confidentiality: Symmetric encryption with a first secret key (agreed on during the

handshake)
○ Integrity: HMAC with a second secret key (agreed upon during the handshake)

11

TLS Record Protocol: Sending side
● Fragment the data into manageable blocks
● Optionally compresses the data
● Apply a MAC
● Encrypt

12

TLS Record Protocol: Receiving side

13

● Decrypt
● Verify (HMAC)
● Decompress
● Reassemble

TLS 1.2 Record Protocol
● Order of integrity protection and encryption
● MAC-then-encrypt (used in TLS)

○ Guarantees integrity of the plaintext
○ The MAC is encrypted
○ Needs to decrypt on the receiver side before MAC verification
○ Susceptible to attacks (POODLE)

● Encrypt-then-MAC
○ Provides integrity over plaintext and

ciphertext
○ Verify the MAC and only then

decrypt (does not feed spoofed
ciphertext into the decryption step)

● TLS 1.3: Upcoming versions will likely use a different scheme:
Authenticated Encryption (simultaneously provides confidentiality,
integrity, and authenticity of the data) 14

TLS Record Protocol: MAC-then-encrypt

15

TLS Record Format
● First byte is the content type and

identifies the record layer
protocol type

16

TLS Record Format
● Two bytes of version numbers

○ Major and minor version

● Two bytes of total length
information (Protocol message +
MAC + Padding) 17

TLS Handshake Protocol
● Operates on top of TLS records
● Establish the cryptographic parameters of the

session
○ Agree on a protocol version
○ Select cryptographic algorithms
○ Authenticate the communicating peers (optional, but

very often used)
○ Use public-key encryption techniques to generate

shared secrets

● Each party may implement a specific subset of
cryptographic operations

● The goal is to agree on the strongest possible
crypto parameters that both parties support

18

TLS Handshake Protocol

● Exchange hello messages to agree on algorithms, exchange random
values, and check for session resumption

● Exchange the necessary cryptographic parameters to allow the client and
server to agree on a premaster secret

● Exchange certificates and cryptographic information to allow the client and
server to authenticate themselves

● Generate a master secret from the premaster secret and exchanged
random values

● Provide security parameters to the record layer
● Allow the client and server to verify that their peer has calculated the same

security parameters and that the handshake occurred without tampering
by an attacker

19

TLS Handshake: Premaster and master secret
● Premaster secret

○ Input that helps to derive the master secret
○ Detach the master secret from contents that is transmitted between the client and the

server

● Master secret
○ 48-byte secret byte sequence
○ Used on both sides to derive keying material for the record layer

■ the key for symmetric encryption
■ the initialization vectors (IV) for symmetric encryption
■ the HMAC for message integrity

○ Computed by a function of the premaster secret and random nonces (depends on the key
exchange algorithm)

○ RSA: Permutation of the client-chosen premaster secret (the premaster secret is sent
encrypted with the server’s public key)

○ DH: Client and server derive the master secret from the DH key exchange result
20

TLS Handshake
● Consists of up to 13 messages, some of which

are optional (marked orange)
● Divided into 4 phases

1. Establish security capabilities
2. Server authentication and key exchange
3. Client authentication and key exchange
4. Finish

21

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

TLS Handshake: Phase 1
● Establish security capabilities

○ Client and server generate nonces
○ Protocol Version, Session ID, Cipher Suite, and

Compression Method

● ClientHello
○ Highest supported TLS version
○ Client-generated nonce
○ Session ID (if continuation) or zero

● ServerHello
○ Chosen TLS version
○ Server-generated nonce
○ Session ID (copied from client) or zero

22

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

TLS Handshake: Phase 2
● Server authentication and key exchange
● ServerCertificate

● Authenticate to the client using an X509v3 certificate
● Possibly send intermediate certificates

● ServerKeyExchange
● Diffie-Hellman: Server parameters
● RSA: no ServerKeyExchange parameters required
● PSK: identity hint

● ClientCertificateRequest
● If present, ask the client to present its client certificate

⇒ mutual authentication (both parties)

● ServerHelloDone
● “The hello-message phase of the handshake is

complete”

23

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

TLS Handshake: Phase 3
● Client authentication and key exchange
● ClientCertificate

○ Send an X509v3 certificate, if the server asked for it
with a ClientCertificateRequest in phase 2

● ClientKeyExchange
○ Second part of the key exchange
○ Diffie-Hellman: Client parameters
○ RSA: 48-byte premaster secret, encrypted with the

server’s public key
○ Both parties now have enough info to generate the

master secret (and the session keys)

● CertificateVerify
○ Client proves access to the ClientCertificate’s private

key by signing the handshake messages

24

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

TLS Handshake: Phase 4
● Handshake completed
● ChangeCipherSpec (sent by the client)

○ Switch to the agreed cipher
○ From now on, the messages from the client will be

encrypted and authenticated

● Finished (sent by the client)
○ Contains a hash and MAC over the previous

handshake messages + "client finished"

● ChangeCipherSpec (sent by the server)
○ Switch to the agree cipher
○ From now on, the messages from the server will also

be encrypted and authenticated

● Finished (sent by the server)
○ Contains a hash and MAC over the previous

handshake messages + "server finished"
25

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

TLS: Cipher suites
● ClientHello and ServerHello announce which cipher suites the

implementation supports and which is chosen for the session
● A cipher suite comprises of

○ a key exchange algorithm
○ an authentication algorithm
○ a symmetric encryption algorithm
○ and a Message Authentication Code (MAC) algorithm

● Naming scheme
○ TLS_RSA_WITH_3DES_EDE_CBC_SHA

■ RSA specifies the key exchange algorithm and the authentication algorithm
■ 3DES_EDE_CBC specifies the block cipher to encrypt messages
■ SHA indicates the message authentication algorithm

26

TLS: Cipher suites (www.internet-sicherheit.de)

27

ECDHE: Elliptic Curve
Diffie-Hellman Key Exchange

RSA: RSA authentication

AES256 with GCM:
Symmetric encryption with
authentication

SHA384: PRF/hash function

TLS: Considerations for key exchange algorithms
● Various key exchange algorithms can be chosen from

○ Static RSA key exchange
○ Transient RSA key exchange
○ Diffie-Hellman key exchange

○ Pre shared keys (PSK) (not really a key exchange)

● Static RSA key exchange may not provide perfect forward secrecy (PFS)
● DH key exchange however does provide PFS
● Transient RSA key exchange is supported in TLS, but rarely used

28

TLS: Considerations for pre-shared keys
● Usually, TLS uses public key certificates
● But: Various forms of pre-shared key protocols exist in TLS (RFC4279)

○ Plain PSK
○ DHE-PSK

■ Protect against dictionary attacks by passive eavesdroppers (but not active
attackers) and also provide Perfect Forward Secrecy (PFS)

○ RSA-PSK
■ Combine public-key-based authentication of the server (using RSA and certificates)

with mutual authentication using a PSK
■ TLS-RSA-PSK is used in the web authentication of the German electronic ID

● Advantages
○ PSK can avoid the need for public key operations
○ Bind the TLS connection to a previously established session (over a different protocol)

29

TLS-RSA-PSK: German electronic ID
● One application of TLS-RSA-PSK is the web authentication protocols for

the German electronic ID (BSI-TR-03124 and BSI-TR-03112)
● The TLS session is bound to a web authentication session using the PSK

○ ServerKeyExchange

■ Transmits the session identifier as the
psk_identity hint field

○ ClientKeyExchange

■ Transmits the RSA-encrypted PSK
(the premaster secret)

30

ServerCertificate

ServerKeyExchange

ClientCertificateRequest

ServerHelloDone

ClientCertificate

ClientKeyExchange

CertificateVerify

2

3

TLS-RSA-PSK: German electronic ID

31

● The PSK and the identity hint are exchanged beforehand
○ Identity hint: SessionIdentifier
○ PSK: PathSecurity-Parameters <PSK>...</PSK>

Authentication in TLS

32

TLS authentication
● TLS serves two goals

○ Privacy (discussed in detail until now)
○ Authentication of the peers

● For authentication, X509 certificates
and a public key infrastructure is used

● Two requirements
○ Authenticate a server (and optionally a client)
○ Obtain the server’s (and optionally the client’s)

public key

33

X.509 Authentication Service and Certificate
● Internet standard that defines

○ the format for public key certificates
○ revocation lists
○ certification path validation algorithm

● X.509 is used in
○ IPSec
○ TLS
○ electronic signatures

● Standardized by ITU-T
● Based on the ASN-1 encoding scheme

34

X.509 certificate example (1/2)

35

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=BE, O=GlobalSign nv-sa, CN=GlobalSign Organization Validation CA - SHA256 - G2
 Validity
 Not Before: Nov 21 08:00:00 2016 GMT
 Not After : Nov 22 07:59:59 2017 GMT
 Subject: C=US, ST=California, L=San Francisco, O=Wikimedia Foundation, Inc., CN=*.wikipedia.org
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c9:22:69:31:8a:d6:6c:ea:da:c3:7f:2c:ac:a5:
 af:c0:02:ea:81:cb:65:b9:fd:0c:6d:46:5b:c9:1e:
 ed:b2:ac:2a:1b:4a:ec:80:7b:e7:1a:51:e0:df:f7:
 c7:4a:20:7b:91:4b:20:07:21:ce:cf:68:65:8c:c6:
 9d:3b:ef:d5:c1
 ASN1 OID: prime256v1
 NIST CURVE: P-256

Who issued the certificate?

Who is the certificate holder?
Wikipedia (Common Name)

When is the certificate valid?

What is the public key?

X.509 certificate example (2/2)

36

 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Agreement
 Authority Information Access:
 CA Issuers - URI:http://secure.globalsign.com/cacert/gsorganizationvalsha2g2r1.crt
 OCSP - URI:http://ocsp2.globalsign.com/gsorganizationvalsha2g2
 X509v3 Certificate Policies:
 Policy: 1.3.6.1.4.1.4146.1.20
 CPS: https://www.globalsign.com/repository/
 Policy: 2.23.140.1.2.2
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.globalsign.com/gs/gsorganizationvalsha2g2.crl
 X509v3 Subject Alternative Name:
 DNS:*.wikipedia.org, DNS:*.m.mediawiki.org, DNS:*.m.wikibooks.org, …, DNS:wikipedia.org
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 X509v3 Subject Key Identifier:
 28:2A:26:2A:57:8B:3B:CE:B4:D6:AB:54:EF:D7:38:21:2C:49:5C:36
 X509v3 Authority Key Identifier:
 keyid:96:DE:61:F1:BD:1C:16:29:53:1C:C0:CC:7D:3B:83:00:40:E6:1A:7C
 Signature Algorithm: sha256WithRSAEncryption
 8b:c3:ed:d1:9d:39:6f:af:40:72:bd:1e:18:5e:30:54:23:35:
 ...

X.509 Common Name
● The Common Name field is important to identify the authenticated peer
● Two variants

○ Specific host name: www.google.com Only www.google.com, nobody else
○ Wildcard pattern: *.google.com Any host whose name ends in .google.com

● Browsers interpret the star (‘*’) differently
○ Firefox 3: ‘*’ matches any character, including the dot ‘.’

■ www.subdomain.example.com matches *.example.com
○ MS Internet Explorer 7: ‘*’ does not match the dot

■ www.subdomain.example.com will not match *.example.com

● The Subject Alternative Name extension for X.509 v3 can be used for a
certificate that is used by more than just one hostname

37

Certificate verification chains
● The public key infrastructure (PKI) allows to build a chain from trusted root

entities to the issued certificate
● The root entities must be available to a the verifier

○ Typically a set of root CA certificates that are built into the OS or the browser

● Various levels of intermediate certificate entities

38

root 1 root 2

intermediate 1

*.wikipedia.org *.wikimedia.org

www.internet-sicherheit.de

intermediate 2

intermediate 3

TLS root CA certificates

39

TLS root CA certificates

40

Certificate verification chain: Example
● The server’s certificate was issued and signed by an intermediate

certificate authority (DigiCert SHA2 High Assurance Server CA)
● The intermediate CA certificate was signed by the root CA (DigiCert High

Assurance EV Root CA)

41

Subject: DigiCert High Assurance EV Root CA
Issuer: DigiCert High Assurance EV Root CA

Subject: DigiCert SHA2 High Assurance Server CA
Issuer: DigiCert High Assurance EV Root CA

Subject: CN=*.wikipedia.org
Issuer: DigiCert SHA2 High Assurance Server CA

Subject: CN=*.example.com
Issuer: DigiCert SHA2 High Assurance Server CA

self-signed

signed by

signed by

Certificate verification chain: Example
● The server’s certificate was issued and signed by an intermediate

certificate authority (DigiCert SHA2 High Assurance Server CA)
● The intermediate CA certificate was signed by the root CA (DigiCert High

Assurance EV Root CA)

42

Subject: DigiCert High Assurance EV Root CA
Issuer: DigiCert High Assurance EV Root CA

Subject: DigiCert SHA2 High Assurance Server CA
Issuer: DigiCert High Assurance EV Root CA

Subject: CN=*.wikipedia.org
Issuer: DigiCert SHA2 High Assurance Server CA

Subject: CN=*.example.com
Issuer: DigiCert SHA2 High Assurance Server CA

self-signed

signed by

signed by

Operating System or Browser

TLS ServerCertificate message

Certificate Revocation, OCSP
● What if a certificate gets compromised?
● Two possibilities

○ It ages out (has a defined end date for the validity)
○ It can be revoked

● Revocation requires that the verifying parties query a service
○ Certificate Revocation List (CRL) can be downloaded
○ Online Certificate Status Protocol (OCSP) is a commonly used protocol to check for

revocation of a certificate

● How does the verifier know who to ask?
○ The OCSP endpoint and/or the CRL endpoint is encoded in the certificate

43

X509v3 extensions:
 ...
 Authority Information Access:
 OCSP - URI:http://ocsp2.globalsign.com/gsorganizationvalsha2g2
 ...
 X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.globalsign.com/gs/gsorganizationvalsha2g2.crl

Extended Validation (EV) Certificates
● Extended Validation (EV)

○ Stricter issuance and verification policies
○ Protects users against valid certificates

of similar-looking (phishing) domains

● Similar-looking domains should not
be able to get EV certificates
○ E.g., deutcshe-bank.com

● Requirements
○ Legal identity as well as the operational

and physical presence of website owner
○ Applicant is the domain name owner or

has exclusive control over domain
○ Confirm the identity and authority of the

individuals acting for the website owner

● No wildcard pattern allowed
44

TLS: Session IDs

● The TLS handshake is expensive and does not scale well
● The concept of a session describes a context (including the chosen cipher

suite) which can be reused across multiple TLS connections
● The client can provide a session ID to signal the server that it would like to

continue an existing session
● Less effort to resume a session or add parallel connections (e.g., in case

of HTTPS where multiple connections to the same target are often
observed)

45

TLS 1.3 (in draft)
● Remove problematic aspects from older TLS versions

○ Compression
○ RSA key exchange (use DH instead)
○ MAC-then-Encrypt (use Authenticated Encryption instead)
○ No longer allows CBC mode of operation (use GCM instead)
○ Renegotiation
○ Weak ciphers (export ciphers): RC4, MD5, SHA1

● Avoid downgrade attacks
○ Sign elements of the handshake (including the list of supported cipher suites)
○ MITM can not change the list of cipher suites (without breaking the signature)

● Speed up the handshake
○ TLS 1.2: 2 full roundtrip messages
○ TLS 1.3: Make assumptions on supported cipher suites and send key derivation material

up front (“just in case you also support AES-GCM, here is some key derivation material”)

46

HTTPS: TLS with HTTP
● Establish a TLS connection
● Transmit HTTP messages over the TLS channel
● Require that the host name equals the server certificate’s common name
● Require a server certificate with a valid certificate chain that originates in a

certificate authority (CA) certificate
● Require valid issue timestamp

○ Current date and time > certificate issue date and time
○ Current date and time < certificate validity end date and time

● Enforce certain minimum cipher suites (do not fall back to NULL cipher
suite from old SSL/TLS versions)

47

TLS extensions: Server Name Indication
● Problem: The TLS connection is established before the first application

layer message reaches the destination
● Some protocols bind the DNS resolution result to a view on the application
● For example, HTTP has the Host header

○ It specifies the host name that was used to resolve the IP address of the destination
○ It controls which view (virtual host) the server uses to deliver responses

48

TLS example traffic

49

TLS example: Connection to Google APIs

The following example shows how a TLS connection is established between a
Chrome browser (version 62) and the host safebrowsing.googleapis.com.

50

TLS example: ClientHello
● TLS record has version TLS 1.0
● ClientHello signals the client can

speak TLS 1.2
● Random: client-generated nonce
● Offers 14 cipher suites
● Offers 1 compression algorithm
● Supports 13 TLS extensions

including
○ Server Name Indication (server_name)
○ Elliptic curve point formats
○ Application layer protocol negotiation

(Signals that the client wants to speak
http/1.1)

51

TLS example: ClientHello (SNI)
● Supports 13 TLS extensions

including
○ Server Name Indication (server_name)

safebrowsing.googleapis.com

○ Elliptic curve point formats
○ Application layer protocol negotiation

(Signals that the client wants to speak
http/1.1)

52

TLS example: ClientHello: Cipher suites

53

● Offers 14 cipher suites
● Each cipher suite is encoded

in two bytes
● The total length is 14*2

= 28 bytes
● The list is sorted by

cryptographic strength

TLS example: ServerHello

● TLS record has version TLS 1.2
● ServerHello signals TLS 1.2 was

chosen
● Random: server-generated nonce
● Chooses cipher suite
● No compression
● Does not set a session ID
● Responds to 7 TLS extensions

54

TLS example: Server certificate

55

TLS example: Server Key Exchange

56

TLS example: Server Hello Done

57

TLS example: Client Key Exchange

58

TLS example: Change Cipher Spec

59

TLS example: Finished

60

Attacks against TLS

61

Weakness in SSL 1.0 (1/2)

62

● A chooses session key, B then authenticates A
○ Assumption: A and B know each other’s public keys or can obtain certificates
○ A sends B a session key KAB encrypted under B’s public key
○ B challenges A with random nonce NB encrypted under session key
○ A authenticates against B by reflecting a signed version of the decrypted nonce

{ } Encryption
[] Signature

Weakness in SSL 1.0 (2/2)

63

● Attack: B can impersonate A in a session with C
○ A will blindly sign any nonce without binding result to identifier
○ C challenges B with a nonce, but B will forward this challenge to A
○ A can replay nonce signed by A to other session with C

● Fix: Include identifiers (A, B) and a nonce chosen by A (NA) before signing
● Lesson learned: Do not include signing oracles. Bind names before signing.

Attacks against TLS/SSL: Timeline

64
Source: Ruben Niederhagen, Attacks on TLS/SSL, Timeline

Man-in-the-middle attack against TLS

65 ht
tp

://
bl

og
.tr

en
dm

ic
ro

.c
om

/t
re

nd
la

bs
-s

ec
ur

ity
-in

te
lli

ge
nc

e/
ex

te
nd

ed
-v

al
id

at
io

n-
ce

rt
ifi

ca
te

s-
w

ar
ni

ng
-a

ga
in

st
-m

itm
-a

tta
ck

s/

Man-in-the-middle attack against TLS
● The end user and the server do not know each other beforehand
● The attacker places herself in the middle between the victim and the target

⇒ hence the name of the attack

● What prevents a successful man-in-the-middle attack?

66

Man-in-the-middle attack against TLS
● The end user and the server do not know each other beforehand
● The attacker places herself in the middle between the victim and the target

⇒ hence the name of the attack

● What prevents a successful man-in-the-middle attack?
○ The authentication via certificates!
○ Assuming that the involved certificates are valid
○ No compromised CA
○ No attacker-controlled CA certificate on the victim system

67

Popular attacks against TLS
● Padding Oracle Attacks

○ Initially discovered in 2002, practical attack shown in 2013 “Lucky 13”: Timing side channel
attack against ciphers in CBC mode of operation, Royal Holloway London

○ Underlying problem: MAC-then-encrypt
○ POODLE attack in 2014: Vulnerability in SSL 3.0 (1999)
○ ⇒ Use Encrypt-then-MAC or even better: Use Authenticated Encryption ciphers/modes

● BEAST (Browser Exploit Against SSL/TLS)
○ Described in 2004, practical attack shown in 2011
○ Predictable initialization vectors (IV) in SSL 3.0 and TLS 1.0
○ Chosen-plaintext attack can be used to derive parts of the plaintext
○ ⇒ Randomize IVs

● Compression attacks
○ Compression is a bad idea in TLS
○ Redundancy in the plaintext will compress better, hence the ciphertext will be shorter
○ Practical attack shown in 2012 as Compression Ratio Info-leak Made Easy (CRIME)
○ ⇒ No more compression in TLS 1.3 68

CRIME: Compression Ratio Info-leak Made Easy (2012)
● Leverages compression side effects to break TLS
● Idea: Try to produce an exact copy of an initial secret value in the same

packet
● Typical secret of interest: the Cookie header

69

GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...

CRIME: Compression Ratio Info-leak Made Easy (2012)
● Leverages compression side effects to break TLS
● Idea: Try to produce an exact copy of an initial secret value in the same

packet
● Typical secret of interest: the Cookie header

70

GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...
Cookie: session=XdH9!7sLf6

GET / HTTP/1.1
Host: paypal.com
Cookie: session=s3cr3t_xyz
...
Cookie: session=s3cr3t_xyz

compressed length=k

compressed length=m

m < k

CRIME: Compression Ratio Info-leak Made Easy (2012)
● Mitigation

○ Disable compression!
○ TLS 1.3 will no longer allow compression
○ Prevent attacker-controlled payload in the victim’s context

■ Class of attacks: cross-site request forgery (CSRF)

● BREACH: Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext, 2013

● BREACH is an attack similar to CRIME
○ The attack leverages HTTP compression instead of TLS compression
○ Likely also works with TLS 1.3
○ Again: disable compression

71

TLS attack: Compromised Root CA
● If a root CA is compromised, the security of the entire system is at stake

● Impact of compromised root CA
○ A root CA can issue certificates for every domain
○ A root CA can issue code signing certificates for programs

● Significant incidents
○ Comodo, 2011: Compromised CA
○ DigiNotar, 2011: Compromised CA issued certificates to Iranian actors
○ Trustwave subordinate, 2012: Used for interception of TLS connections

72

Compromised Root CA: Comodo
● Comodo accepts certificate orders submitted through resellers

○ Reseller uses a program to authenticate to Comodo and submit an order with a domain
name and public key, Comodo automatically issues a certificate for this site

● A hacker broke into instantSSL.it and globalTrust.it resellers, decompiled
their certificate issuance program, learned the credentials of their reseller
account and how to use Comodo API
○ username: gtadmin, password: globaltrust

● The hacker wrote his own program for submitting orders and obtaining
Comodo certificates

● Successfully retrieved certificates for various sites
○ mail.google.com, login.live.com, login.yahoo.com, login.skype.com, addons.mozilla.org

73

Compromised Root CA: DigiNotar
● DigiNotar, 2011: Compromised CA issued certificates to Iranian actors

○ PKIoverheid: Dutch national public key infrastructure (PKI)
○ Dutch government took over
○ More than 500 fake certificates signed by DigiNotar found
○ Including a wildcard certificate: *.google.com
○ Likely used for surveillance of Iranian dissidents

● What caused the incident?
○ Questionable security procedures at DigiNotar

■ The audit [...] revealed that DigiNotar had lacked basic security safeguards,

such as strong passwords, anti-virus protection, and up-to-date software

patches.

■ Core certificates in a centralized store on a Windows domain
■ Admin-Passwort: "Pr0d@dm1n" Seriously?!

○ In total, 531 fraudulent certificates issued

74

TLS attack: Compromised Root CA
● If a root CA is compromised, the security of the entire system is at stake

● Mitigation thoughts
○ Limit the geographic area/country/language where a root CA may issue certificates
○ Limit the TLD for which certificates may be issued
○ Basically all of these approaches build on an artificial segmentation of the certificate

name space
○ HTTP Public Key Pinning (HPKP), RFC7469

■ Pin public keys to a website
■ The browser learns these and can compare on subsequent visits

75
Podcast on the DigiNotar breach: https://darknetdiaries.com/episode/3/

Public-Key-Pins: max-age=2592000;
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
report-uri="http://example.com/pkp-report"

TLS attack: Common name parsing issues

76

● Problem: A NULL byte in the common name (Marlinspike, 2009)
● Requirements

○ Attacker-controlled site: www.evilsite.com
○ Target site www.paypal.com

● Certificate issuer parses the common name field of an X.509 certificate
differently than a browser
○ Certificate issuer: Starts parsing from the end
○ Browser: Starts parsing from the start

www.paypal.com\0www.evilsite.com

\0www.evilsite.comwww.paypal.com\0

Certificate issuer
Browsers

http://www.evilsite.com
http://www.paypal.com

TLS attack: Exploiting hash collisions
● The Flame targeted attack malware
● Used in cyber espionage ca. 2010 to 2012
● Signed with a fraudulent intermediate CA certificate that appears to be

issued by Microsoft
○ The fraudulent certificate is accepted by Windows Update
○ Fake intermediate CA certificate was created using an MD5 chosen-prefix

collision against an obscure Microsoft Terminal Server Licensing Service
certificate that was enabled for code signing and still used MD5

● Considered by many as an example of world-class
applied cryptanalysis

77

TLS attack: Exploiting hash collisions

78
Source: https://trailofbits.files.wordpress.com/2012/06/flame-md5.pdf

TLS attack: Exploiting hash collisions

79

TLS implementation issues
● Implementing cryptography is hard
● Heartbleed bug in OpenSSL, 2014
● The Heartbeat mechanism allows to check whether the

connection is still alive
● From the RFC:

When a HeartbeatRequest message is received [...], the

receiver MUST send a corresponding HeartbeatResponse message

carrying an exact copy of the payload of the received

HeartbeatRequest.

● The bug consists in not checking the actual length versus
the announced length

● Buffer over-read vulnerability in the implementation, not in
the standard

80

TLS implementation issues: HEARTBLEED

81

TLS implementation issues: HEARTBLEED

82

References
● Prof. Dr. Christian Rossow, Cryptography lecture, CISPA/Uni Saarbrücken
● RFC 5246
● RFC 6176
● Ruben Niederhagen, Applied Crypto lecture, TU Eindhoven
● https://www.wired.com/2011/09/diginotar-bankruptcy/
● Angriffe auf Zertifizierungsdiensteanbieter und Auswirkungen,

https://www.isb.admin.ch/dam/isb/de/dokumente/themen/sicherheit/PKI
_4-5-2012.pdf.download.pdf/PKI_4-5-2012.pdf

83

https://www.isb.admin.ch/dam/isb/de/dokumente/themen/sicherheit/PKI_4-5-2012.pdf.download.pdf/PKI_4-5-2012.pdf
https://www.isb.admin.ch/dam/isb/de/dokumente/themen/sicherheit/PKI_4-5-2012.pdf.download.pdf/PKI_4-5-2012.pdf

Thank you. Questions?

84

