

Internet Early Warning System → Combination

Prof. Dr.

Norbert Pohlmann

Institute for Internet Security - if(is)
University of Applied Sciences Gelsenkirchen
http://www.internet-sicherheit.de

Gelsenkirchen, Germany

Structure of an Early Warning System→ Technical Element: Sensor (S)

General view on a sensor connected to a communication infrastructure used to transfer data packets

- with
 - **P** := complete data traffic
 - D := data traffic going through the sensor
 - **Y** := result of the processing conducted by the sensor
 - **System** := tap, router, switch, computer system, ...
- For the information content can be applied: $I(Y) \le I(D) \le I(P)$

Prof. Dr. Norbert Pohlmann, Institute for Internet Security - if(is), University of Applied Sciences Gelsenkirchen, Germany

Structure of an Early Warning System → Technical Element: Sensor (S)

- Sensor collects data, which is used to determine the current status
- Sensors are distributed throughout the entire Network (N), to gain a representative overview of the network
- Different types of sensors have been developed
 - Complete recording of the network traffic (e.g. Wireshark)
 - Netflow (Router accounting method)
 - Packet based sensors (statistical approach)
 - Honeypots (unreal communication approach)
 - Availability of Services, Nodes and Components
 - LogData analysis (event based approach)
 - ..

Prof. Dr. Norbert Pohlmann, Institute for Internet Security - if(is), University of Applied Sciences Gelsenkirchen, Germany

Structure of an Early Warning System → Technical Element: Sensor (S) - 1/2

What are the challenges?

- Complete data traffic (P)
 - Size of data traffic (up to 400 G bit/s DE-CIX)
 - Legal conditions (accesses)
 - · ...
- Data traffic going through the sensor (D)
 - Performance (CPU, ...)
 - Size of the data (10 M/Bit -> 100,58 Gbyte/24 h)
 - Method of reduction/analyze (bytes vs. information)
 - ...
- Result by the sensor (Y)
 - What are the best information?
 - How long can we store the information (size of data)?
 - Legal conditions (pseudonymisation and anonymization)?
 - ...

Prof. Dr. Norbert Pohlmann, Institute for Internet Security - if(is), University of Applied Sciences Gelsenkirchen, Germany

Structure of an Early Warning System→ Technical Element: Sensor (S) - 2/2

- The sensor could be work on different places
 - wire (without end point influence)
 - in the endpoint (operation system, firewall, application, ...)

Internet Early Warning System → Cooperation

Prof. Dr. Norbert Pohlmann, Institute for

Logging of events

I ransfer of the findings to local management

Transfer of anonymous data to global system

Exchange of data for distributed Early Warning

Perform counteractive measures

Internet Early Warning System → Combination

Thank you for your attention! Questions?

Prof. Dr.

Norbert Pohlmann

Institute for Internet Security - if(is)
University of Applied Sciences Gelsenkirchen
http://www.internet-sicherheit.de

