

Künstliche Intelligenz für Cyber-Sicherheit

- Vorlesung Cyber-Sicherheit -

Prof. Dr. (TU NN)

Norbert Pohlmann

Institut für Internet-Sicherheit – if(is) Westfälische Hochschule, Gelsenkirchen http://www.internet-sicherheit.de

KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

KI für Cyber-Sicherheit→ Inhalt

Ziele und Ergebnisse der Vorlesung

- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

Ziele und Ergebnisse der Vorlesung→ KI für Cyber-Sicherheit

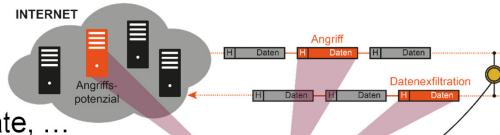
- Gutes Verständnis für die Prinzipien des Maschinellen Lernens.
- Erlangen der Kenntnisse über verschiedene Verfahren des Maschinellen Lernen und der Künstlichen Intelligenz und der Angriffe auf diese Verfahren.
- Gewinnen von praktischen Erfahrungen durch die betrachtung von konkreten Algorithmen und Anwendungen von KI in der Cyber-Sicherheit.

KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

Künstliche Intelligenz → und Cyber-Sicherheit

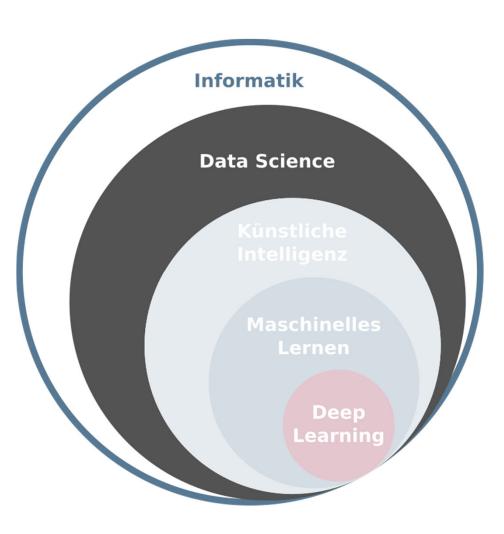
Erhöhung der Erkennungsrate von Angriffen



- Netzwerk, IT-Endgeräte, ...
- adaptive Modelle (selbständig, kontinuierlich, ...)
- Unterschied: normal und verdächtig, ..
- Unterstützung / Entlastung von Cyber-Sicherheitsexperten (von denen wir nicht genug haben)
 - Erkennen von wichtigen sicherheitsrelevanten Ereignissen (Priorisierung)
 - (Teil-)Autonomie bei Reaktionen, ... Resilienz, ...
- Verbesserungen von bestehenden Cyber-Sicherheitslösungen
 - KI leistet einen Beitrag zu einer erhöhten Wirkung und Robustheit
 - Z.B.: Risikobasierte und adaptive Authentifizierung

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Einordnung→ Data Science



 Data Science bezeichnet generell die Extraktion von Wissen aus Daten.

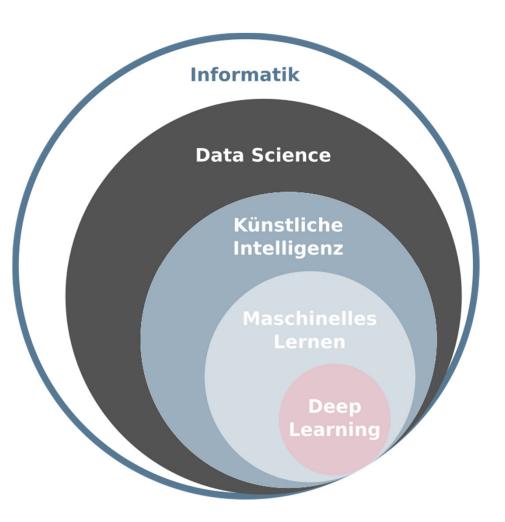
Da es immer mehr Daten gibt, kann auch immer mehr Wissen daraus abgeleitet werden. (Wichtig: Daten müssen Informationen erhalten)

- Abgrenzung zur künstlichen Intelligenz:
 - Statistiken
 - Kennzahlen
 - Datenerhebung

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Einordnung

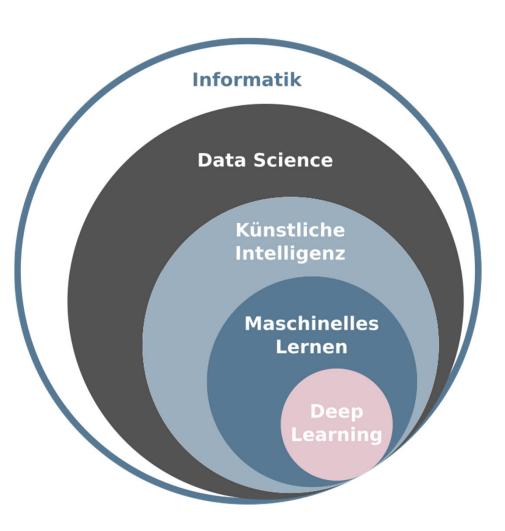
→ Künstliche Intelligenz



- Künstliche Intelligenz ist ein Fachgebiet der Informatik
- setzt intelligentes Verhalten in Algorithmen um
- (Ziel)
 - automatisiert "menschenähnliche Intelligenz" nachzubilden.
 - Starke "Künstliche Intelligenz" (Zukunft)
 - Superintelligenz
 - Singularität
 ("Maschine"
 verbessert
 sich selbst, sind
 intelligenter als Menschen)

Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

Einordnung→ Maschinelles Lernen

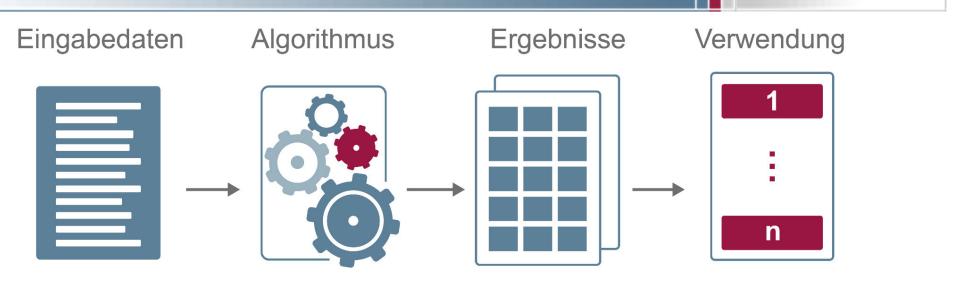


- Maschinelles Lernen ist ein Begriff für die "künstliche" Generierung von Wissen aus Erfahrung (in Daten) durch Computer.
- In Lernphasen lernen entsprechende ML-Algorithmen aus Beispielen (alte Daten) Muster und Gesetzmäßigkeiten.
- Daraus erstehende
 Verallgemeinerungen k\u00f6nnen auf
 neue Daten angewendet werden.
- Schwache "Künstliche Intelligenz" (wird heute erfolgreich umgesetzt)

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule,

Maschinellen Lernens

→ Workflow



Eingangsdaten

Qualität: Inhalt, Vollständigkeiten, Repräsentativität, ... Aufbereitung

Algorithmen (ML)

Support-Vector-Machine (SVM), k-Nearest-Neighbor (kNN), ... Deep Learning

Ergebnisse

Ergebnisse aus der Verarbeitung (Algorithmus) der Eingangsdaten ...

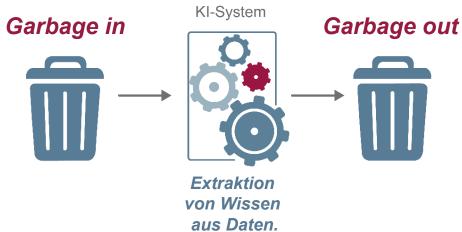
Verwendung

Die Anwendung entscheidet, wie Ergebnisse verwendet werden (Vertrauen).

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Vertrauenswürdigkeit → Qualität der Daten

Paradigma



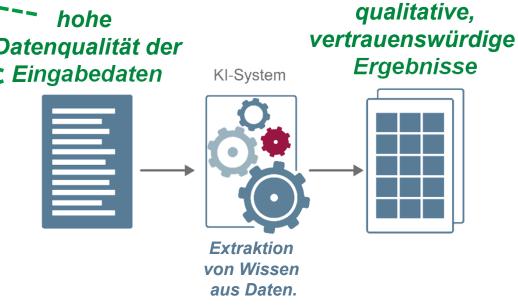
Standards für die Datenqualität:

- → Inhalthöhe der Daten und Korrektheit
- → Nachvollziehbarkeit (Datenquellen)
- → Vollständigkeit und Repräsentativität
- → Verfügbarkeit und Aktualität

Qualitativ hochwertige und sichere Datenqualität der Sensoren motivieren Eingabedaten

Weitere Aspekte zur Erhöhung der Qualität:

- → Datenpools etablieren
- → Austausch von Daten fördern
- → Interoperabilität schaffen
- → Open Data Strategie puschen



Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule,

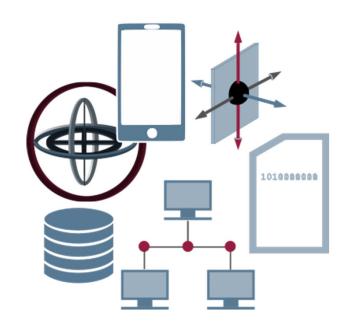
Erfolgsfaktoren − KI / ML → Eingabedaten (1/2)

Erfolgsfaktor: Immer mehr vorhandene Daten

- Smartphone, SmartWatch (körpernah, personenorientiert)
 - Lage- und Beschleunigungssensoren, Nutzereingaben, Benutzerverhalten

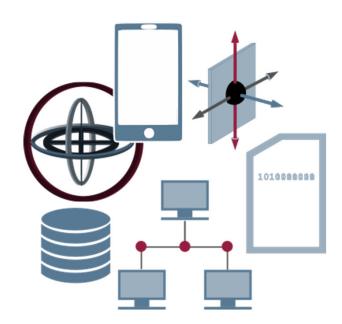
Computer

Nutzereingaben, Benutzerverhalten, Log Daten



Erfolgsfaktoren – KI / ML→ Eingabedaten (2/2)

- Netzwerke, Netzwerkkomponenten (Router, Firewall, ...)
 - Protokolldaten, Log Daten
- Web-Dienste
 - Benutzerverhalten, ...
- loT (Internet of Things)
 - Sensorik und Aktorik
- Auto, ...



Erfolgsfaktoren − **KI** / **ML**→ Leistungsfähige IT und Algorithmen

Erfolgsfaktor: Leistungsfähigkeit der IT-Systeme

enorme Steigerung (CPU, RAM, ...) 20 CPU Kerne, 64 GB
 Arbeitsspeicher,
 1 TB SSD, usw. Spezial-Hardware: GPUs, FPGA, TensorFlow PU (TPU),...

... Parallelisierung, Kommunikationsgeschwindigkeiten, spezielle Software-Frameworks, ...

leistungsfähige Cloud-Lösungen, wie Amazon Web Services, Microsoft Azure, Google Cloud Platform und die IBM Cloud.

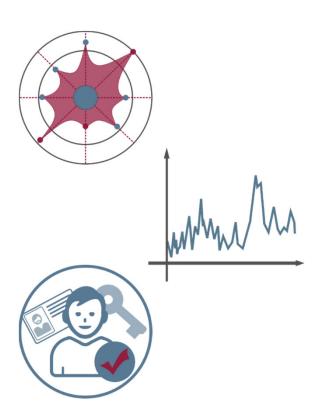
Erfolgsfaktor: **Algorithmen**

- Immer bessere Algorithmen (viel als OpenSource)
- Immer mehr Erfahrungen mit dem Umgang
- Immer einfacherer Zugang zu den Technologien und Diensten
- Beispiele: Support-Vector-Machine (SVM), k-Nearest-Neighbor (kNN), k-Means-Algorithmus, Hierarchische Clustering-Verfahren, Convolutional Neural Network

Künstliche Intelligenz→ Ergebnisse und Verwendung

Ergebnisse sind Modelle zu den gelernten Eingabedaten

- Nutzung der Modelle führt zur konkreten Anwendung, z.B.:
 - Klassifizierung der Eingangsdaten, zur Erkennung von Angriffen
 - Numerische Werte, wie Wahrscheinlichkeiten von normalen Verhalten
 - Binäre Werte, wie eine erfolgreiche biometrischer Authentifizierung



Verwendung: Policy, wie die Ergebnisse genutzt werden sollen.

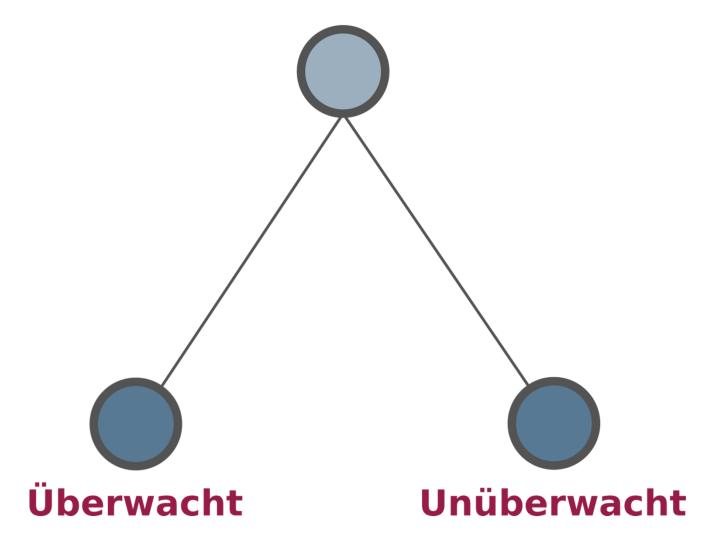
KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Maschinelles Lernen → Kategorien des Lernens

Lernen



Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

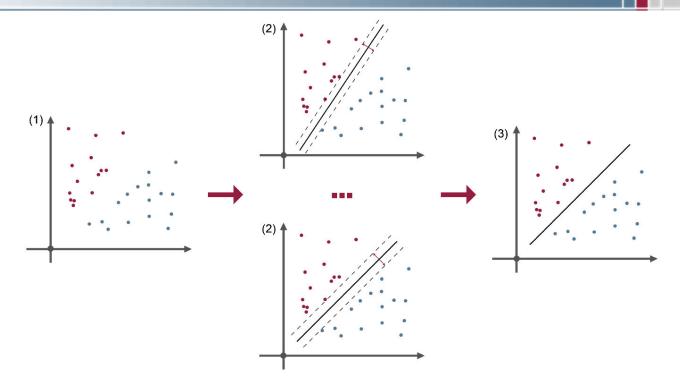
ML-Algorithmus → Überwachtes Lernen

- Ziele des überwachten Lernens
 - Regression: Vorhersagen von numerischen Werten
 - Klassifizierung: Einteilung von Daten in Klassen
- Beispiel: Erkennung von Spam-Mails
- Eingabedaten enthalten erwartete Ergebnisse
- Einteilung der Daten in Trainings- und Testmengen (kontinuierlich lernen)
- Ziel: Selbständig Ergebnisse generieren
- ML-Algorithmus, z.B.:
 - Support-Vector-Machine (SVM)
 - k-Nearest-Neighbor (kNN)

ML-Algorithmus

→ Support-Vector-Machine (SVM)/Training

2-Dimensional



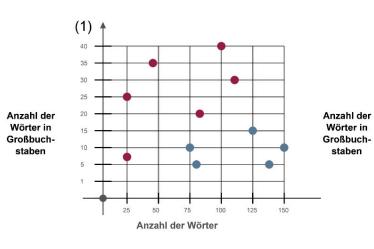
- Input-Daten (1):
 - bereits klassifizierteDaten
 - Abstandsmaß

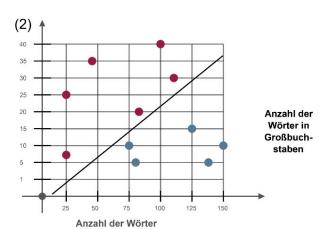
- ML-Algorithmus (2):
 - Ermitteln von Geraden zur Trennung der Daten
 - Bewertung durch Abstand zu den Punkten
 - Wahl der Geraden mit maximalem Abstand zu beiden Klassen

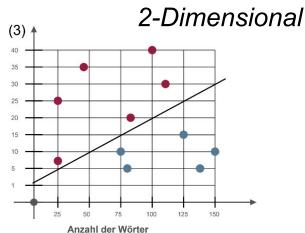
- Output (3):
 - Gerade als Modell zur Klassifizierung

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfällsche Hochschule, Gelsenkirchen

ML-Algorithmus → SVM - Beispiel Training (Spam)E-Mail







"Wissen aus Erfahrung"

Anzahl Wörter	25	25	47	75	79	82	100	110	125	140	150
Anzahl Wörter in Großbuchstaben	7	25	35	10	5	20	40	30	15	5	10
Spam-E-Mail	ja	ja	ja	nein	nein	ja	ja	ja	nein	nein	nein

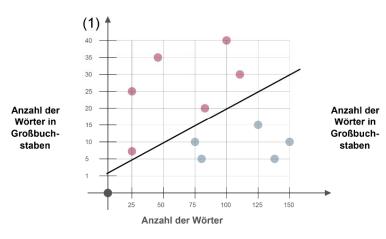
- Input-Daten (1):
 - E-Mails mit entsprechender Klassifikation Spam / kein Spam
- ML-Algorithmus (2):
 - Ermittlung der Geraden, welche die Daten trennen
 - Bestimmung der besten Geraden

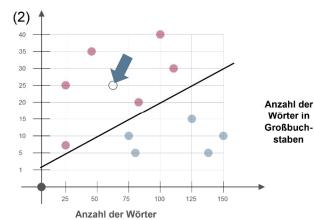
- Output (3):
 - Gerade als Modell zur Klassifizierung von E-Mails als Spam / kein Spam

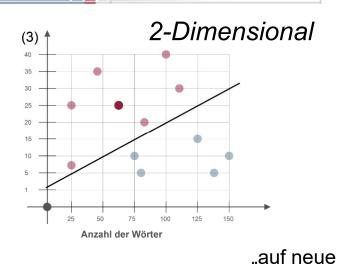
Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfällsche Hochschule, Gelsenkirchen

ML-Algorithmus → SVM - Beispiel Spam - Erkennung

Daten anwenden"







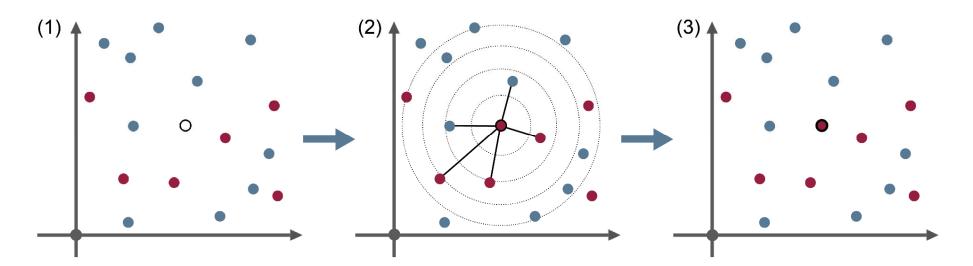
Anzahl Wörter	25	25	47	75	79	82	100	110	125	140	150	63	
Anzahl Wörter in Großbuchstaben	7	25	35	10	5	20	40	30	15	5	10	25	
Spam-E-Mail	ia	ia	ia	nein	nein	ia	ia	ia	nein	nein	nein	?	

- Input-Daten (1):
 - Modell zur Erkennung von möglichen Spam-Mails
 - zu beurteilende E-Mail (z.B.: 63/25)

- ML-Algorithmus (2):
 - Berechnung der Lage der zu untersuchenden
 E-Mail (63/25)
- Output (3):
 - Lage der Punkte zum Modell klassifiziert die E-Mail als Spam-Mail

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus → k-Nearest-Neighbor (kNN)



Input-Daten:

- Bereits klassifizierte Objekte
- unklassifiziertes Objekt
- Anzahl der zu betrachtenden Nachbarobjekte k

ML-Algorithmus:

- Berechnung der Distanz zu allen anderen Objekten
- Betrachtung der k nächsten Nachbarobjekte
- Zuordnung zur am häufigsten vorkommenden Klasse

Output:

Klassifizierung des neuen Objekts

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

ML-Algorithmus → kNN – am Beispiel eines IDS (1/7)

- In diesem Beispiel werden die Systemaufrufe und deren Anzahl betrachtet.
 - Die unterschiedlichen Systemaufrufe werden durch kleine Buchstaben repräsentiert, hier "a" bis "z".
- Ein Prozess besteht aus einer beliebigen, festen Sequenz von Aufrufen.
 - Die Reihenfolge der Aufrufe wird in diesem Beispiel nicht berücksichtig.
 - Die Häufigkeit jedes Aufrufs wird für jeden normalen Prozess gespeichert.
 - Die Prozesse werden als P₁ bis P₄ dargestellt.
 - Die Sequenz der Vorkommen der Systemaufrufe steht hinter den jeweiligen Prozessen in Klammern.

ML-Algorithmus → kNN – am Beispiel eines IDS (2/7)

System- aufruf		h		d		f	_	h			 		m	n		n	_	 		4		v	\ \ \		v	
Prozess	a	b	С	u	е	•	g	h	•	J	N	_	m	•	0	р	Ч	ı	S	L	u	V	W	X	У	
P ₁ ("waafwz")	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1
P ₂ ("asdf")	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
P ₃ ("axzb")	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
P ₄ ("bbffe")	0	2	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Dann wird das Gleichheitsmaß und der Schwellenwert bestimmt, um zu definieren, was "normal" ist bzw. "nicht normal".
 - Die Funktion $sim(X, P_i)$ beschreibt das Ähnlichkeitsmaß des unbekannten Prozesses X zu dem jeweiligen bekannten Prozessen P_i .
 - Häufig verwendete Ähnlichkeitsmaße sind die Euklidische Distanzfunktion oder die Kosinus-Ähnlichkeit.

ML-Algorithmus → kNN – am Beispiel eines IDS (3/7)

- Die Auswahl oder Erstellung einer geeigneten Funktion für das Maß der Ähnlichkeit muss unter Berücksichtigung der zugrundeliegenden Problemstellung erfolgen.
 - Nicht jede Distanzfunktion ist per se für die Erfüllung einer speziellen Problemstellung geeignet.
 - In diesem Beispiel wird die Kosinus-Ähnlichkeit verwendet.
- Für zwei Vektoren X, P wird die Kosinus-Ähnlichkeit folgendermaßen berechnet:

$$sim(X,P) = \frac{\sum_{i=1}^{n} x_i p_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} p_i^2}}, mit \ x_i, p_i \ Komponenten \ von \ X, P, 1 \le i \le n$$

Die Vektoren X, P und deren Komponenten x_i, p_i ergeben sich in diesem Beispiel direkt aus den Systemaufrufen und deren Anzahl.

ML-Algorithmus → kNN – am Beispiel eines IDS (4/7)

- Für einen neuen Prozess X_A ("wasd"), der analysiert werden soll, wird zuerst die Ähnlichkeit zu allen bereits gelernten Prozessen berechnet.
 - In diesem Beispiel sind die Eingabewerte für die Kosinus-Ähnlichkeit ausschließlich positiv.
 - Aus diesem Grund produziert die Funktion sim(X, P) Ausgabewerte im Bereich von 0 bis 1 (einschließlich).
 - Ein Ausgabewert von 0 bedeutet, dass keine Ähnlichkeit zu einem gelernten Prozess vorliegt.
 - Ein Ausgabewert von 1 signalisiert, dass es sich um die gleichen Prozesse handelt.
 - Je näher der Ausgabewert an 1 liegt, desto ähnlicher sind sich die beiden betrachteten Prozesse.

ML-Algorithmus → kNN – am Beispiel eines IDS (5/7)

- Für die Klassifizierung werden die k nächsten Nachbarn mit der geringsten Distanz zu dem neuen Prozess betrachtet.
 - In unserem Beispiel sei der Einfachheit halber k=2.

System- aufruf Prozess		b	С	d	e	f	g	h	i	j	k	I	m	n	o	р	q	r	s	t	u	v	w	x	у	z	$sim(X_A, P_i)$
P ₁ ("waafwz")	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	0,63
P ₂ ("asdf")	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0,75
<i>P</i> ₃ ("axzb")	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0,25
<i>P</i> ₄ ("bbffe")	0	2	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
																											_
X_A ("wasd")	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	

ML-Algorithmus → kNN – am Beispiel eines IDS (6/7)

- Das Ähnlichkeitsmaß der beiden nächsten Prozesse wird in diesem Beispiel gemittelt und mit einem vorher definierten Schwellenwert verglichen.
 - Wird der Schwellenwert erreicht oder überschritten, wird der betrachtete Prozess als "normal" Eingestuft.
 - Die Festlegung des Schwellenwertes kann auf vorher durchgeführten Untersuchungen (z.B. mittels Trainings- und Testdaten) oder auf Erfahrungswerten basieren.
 - In diesem Beispiel wurde der Schwellenwert auf 0,65 festgelegt.
- Der gemittelte Wert beträgt 0,69, welcher die Bedingung (Schwellenwert) für einen bekannten "normalen" Prozess erfüllt.

$$\bar{x} = \frac{(0,63+0,75)}{2} = 0,69 \ge 0,65$$

ML-Algorithmus → kNN – am Beispiel eines IDS (7/7)

■ Für einen weiteren unbekannten Prozess X_B ("cytq") ergeben sich mit der gleichen Vorgehensweise die folgenden berechneten Ähnlichkeiten:

System																											
Prozess	a	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	w	X	У	Z	$sim(X_B, P_i)$
P_1 ("waafwz")	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	0,00
$P_2("asdf")$	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0,00
$P_3("axzb")$	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0,00
P ₄ ("bbffe")	0	2	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
X_B ("cytq")	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	

- Die Berechnung der Kosinus-Ähnlichkeit hat ergeben, dass der Prozess X_B keinem der bekannten Datensätze ähnelt.
 - Folglich beträgt das arithmetische Mittel in jeder Kombination von zwei Nachbarn 0 und X_B wird als "nicht normal" klassifiziert.

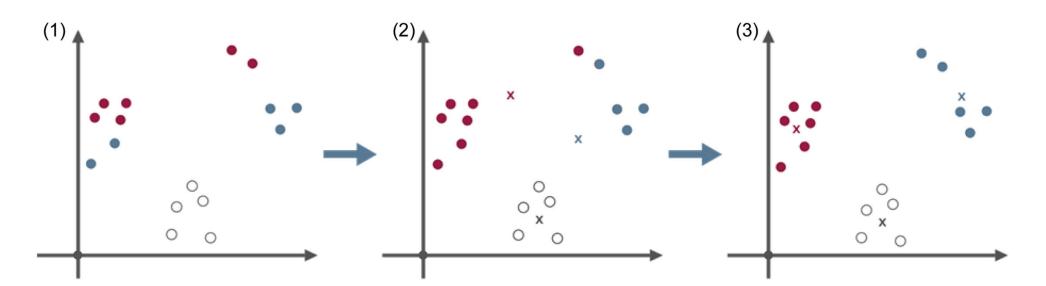
, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus → Unüberwachtes Lernen

- Stärke im Suchen nach Mustern in unklassifizierten Daten
- Erwartungshaltung an diesen Ansatz:
 - Muster erkennen, die vorher anders nicht greifbar waren (Komplexität)
- ML-Algorithmus lernt selbstständig
- Klassische Fehler werden in diesem Sinne nicht produziert
- ML-Algorithmus
 - Clustering setzt ähnliche Datengruppen miteinander in Verbindung, z.B.:
 - k-Means-Algorithmus
 - Hierarchische Clustering-Verfahren
- Problem: Lernt der ML-Algorithmus in die gewünschte Richtung?

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus → k-Means-Algorithmus



Input-Daten:

- beliebige Daten
- Abstandsmaß
- Anzahl k Cluster
- Initiale Zuordnung der Elemente zu Clustern (z.B. zufällig)

ML-Algorithmus:

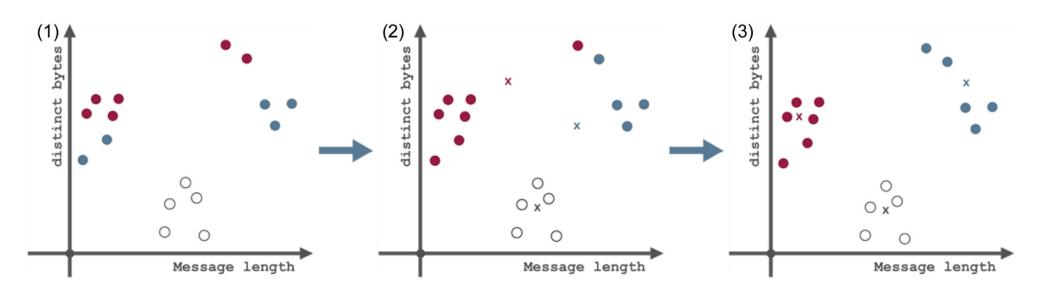
- Berechnung der Schwerpunkte (Zentroide)
- Zuordnung der Elemente zu Cluster mit dem nächsten Zentroid
- Neuberechnung der Zentroide und erneute Zuordnung

Output:

Einteilung der Objekte in k Cluster

⊚ Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus → k-Means-Algorithmus - Beispiel



- Input-Daten (1):
 - Daten von Malware (Palevo, Virut, Mariposa)
 - Abstandsmaß
 - k = 3
 - Initiale Zuordnung nach Message length, distinct bytes

- ML-Algorithmus (2):
 - Berechnung der Durchschnitte
 - Zuordnung der Elemente zur Malwareart mit dem nächsten Zentroid
 - Neuberechnung der Zentroide und erneute Zuordnung

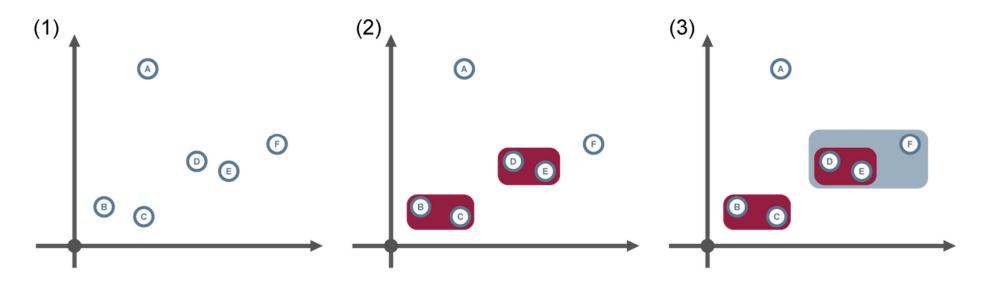
Output (3):

- Einteilung der Malware in die drei Malwarearten
 - Rot = Virut
 - Weiß = Palevo
 - Blau = Mariposa

⊚ Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus

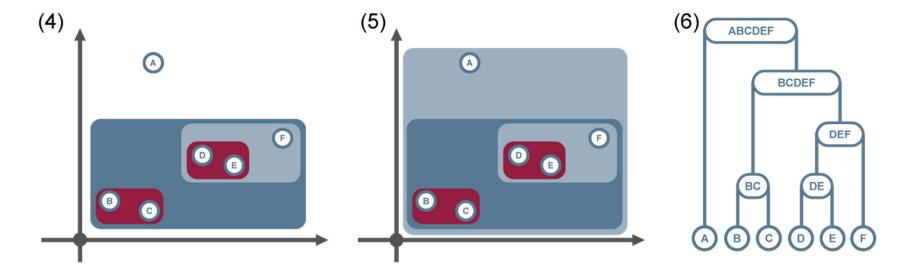
→ Hierarchische Clustering-Verfahren (1)



- Input-Daten (1):
 - beliebige Daten
 - Ähnlichkeitsmaß
- ML-Algorithmus (2 bis 5):
 - jeder Datenpunkt ist ein eigenes Cluster
 - ähnlichste Cluster werden zuerst zusammengeführt
 - entstandene Cluster werden erneut als Eingabedaten verwendet
 - iteratives Zusammenführen der Cluster induziert eine hierarchische Struktur

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus



Output (6):

 Hierarchische Beziehungen zueinander in Form eines Binärbaums (Dendrogramm)

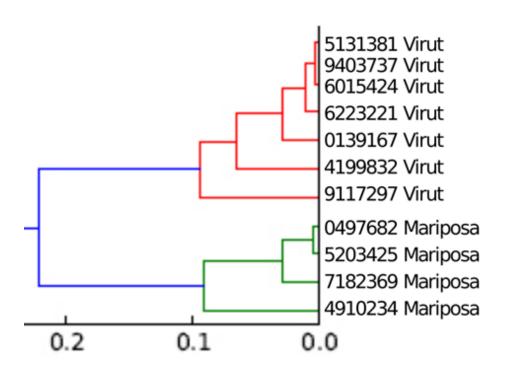
⊚ Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

ML-Algorithmus

internet-sicherheit.

→ Hierarchische Clustering-Verfahren: Beispiel

- Clustering der Daten aus Botnet-Analyse
- Anwendung einer komplexen
 Distanzfunktion
 (Wertebereich [0, 1])
- Trennung der Familien-Cluster bei Distanz von ca. 0.1
- Einordnung der Daten in zwei Malware-Familien Virut und Mariposa

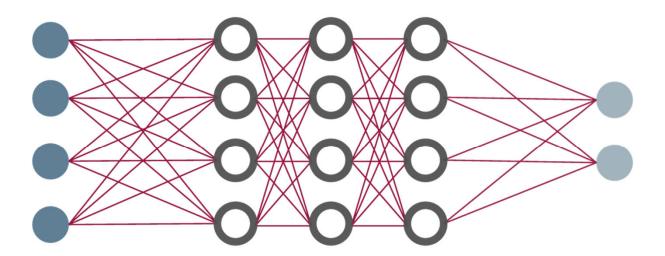


KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

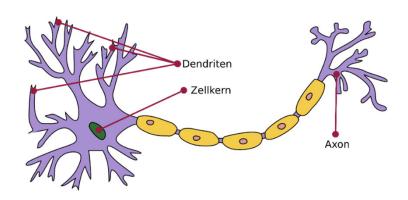
Künstlich Neuronale Netze→ Netze aus künstlichen Neuronen (1/2)

- Vorlage ist die die biologische Struktur des Gehirns/Neurons
- Nutzen Gewichte und mathematische Funktionen (für die Informationsverarbeitung)
- Informationsverarbeitung über mehrere miteinander verbundene Schichten aus künstlichen Neuronen



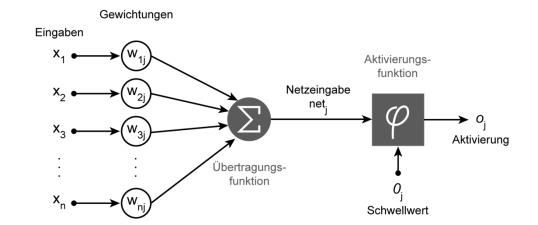
Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstlich Neuronale Netze → Netze aus künstlichen Neuronen (2/2)



Biologisches Neuron:

- Dendriten:
 - Reizaufnahme (Signaleingang)
- Axon:
 - Leitet die Informationen weiter (Signalausgang)
- Zellkern:
 - Reizverarbeitung (Signalverarbeitung)

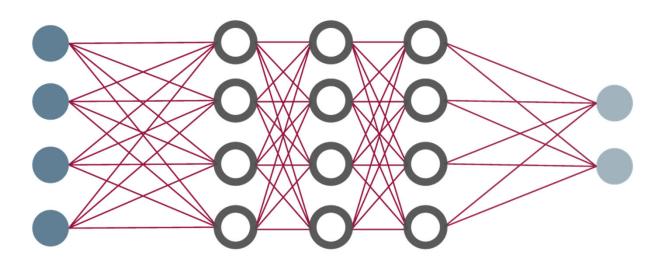


Künstliches Neuron:

- Übertragungsfunktion:
 - Berechnet anhand der Summe der Wichtungen, der Eingaben, die Netzeingabe
- Aktivierungsfunktion/ Ausgabefunktion:
 - Ausgabe der Information
- Schwellenwert:
 - Wert eines Reizes, bei dem das Neuron aktiviert wird

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ **Schichten in einem KNN**



Eingabeschicht:

- Eingabeneuronen (z.B. Ohren, Retina oder Haut)
- Eingabedaten
 werden in geeignete
 Repräsentation
 überführt

Verdeckte Schichten:

- Je nach Komplexität der Aufgabe 1-N verknüpfte Neuronen
- Erkennung von simplen Mustern und Strukturen
- Mit jeder Schicht werden immer komplexere Merkmale herausgefiltert

Ausgabeschicht:

 Ausgabe sämtlicher möglicher Repräsentationen der Ergebnisse

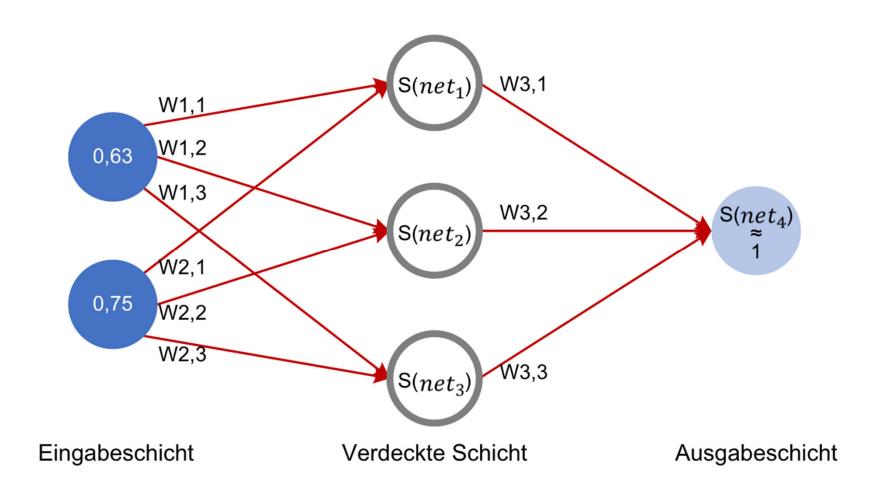
Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfällsche Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ KNN-Beispiel (1/9)

- Nachfolgend wird anhand eines Rechenbeispiels dargestellt, wie ein KNN zu den bereitgestellten Ein- und Ausgabedaten ein Modell in mehreren Evaluationsrunden erstellt.
 - Als Eingabe werden die zwei höchsten Ähnlichkeitsmaße der verschiedenen Prozessaufrufe aus "kNN – am Beispiel eines IDS" verwendet.
 - Basierend auf den Ähnlichkeitsmaßen soll das erzeugte KNN berechnen, ob ein Prozess "normal" ist, also im Sinne der Cyber-Sicherheit ungefährlich ist.
 - In diesem Beispiel wird der Einfachheit halber nur ein Ausgabewert betrachtet.
 - Wenn das KNN eine 1 ausgibt, dann wird ein Prozess als "normal" betrachtet.

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ KNN-Beispiel (2/9)



Künstlich Neuronale Netze → KNN-Beispiel (3/9)

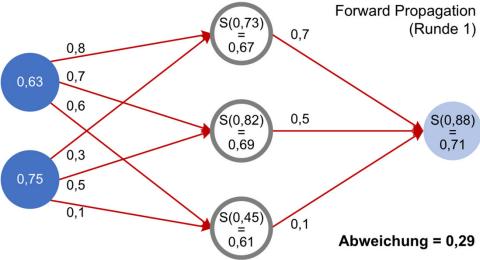
- Die Berechnungen innerhalb des KNN lassen sich grundsätzlich in zwei Phasen unterteilen.
 - In der ersten Phase werden die Berechnungen von der Eingabeschicht in Richtung der Ausgabeschicht durchgeführt (Forward Propagation).
 - Abweichungen im daraus resultierenden Ergebnis werden anschließend durch eine rückwärts gerechnete Anpassung der Kantengewichte minimiert (Back Propagation).
- Nachdem die Kantengewichte angepasst wurden, werden die beiden Phasen erneut durchlaufen.

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfällsche Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ KNN-Beispiel (4/9)

- Diese Vorgehensweise wird so lange wiederholt, bis das Ergebnis in der Ausgabeschicht möglichst genau approximiert wurde.
 - Abhängig von der konkreten Problemstellung können mehrere tausend Runden nötig sein.
 - In diesem einfachen Rechenbeispiel werden nur zwei vorwärts gerichtete und eine rückwärtsgerichtete Runde betrachtet.

 In der ersten vorwärts gerichteten Runden wurden zufällige Kantengewichte gewählt.



Künstlich Neuronale Netze → KNN-Beispiel (5/9)

 Als Aktivierungsfunktion wird in diesem Beispiel die Sigmoidfunktion verwendet.

$$S(t) = \frac{1}{1 + e^{-t}}$$

 Bei der Forward Propagation werden die Netzeingaben für jedes Neuron auf Basis der Eingabewerte und den entsprechenden Kantengewichten folgendermaßen berechnet:

$$net_j = 0.63 * W1, j + 0.75 * W2, j, 1 \le j \le 3$$

$$net_4 = S(net_1) * W3, 1 + S(net_2) * W3, 2 + S(net_3) * W3, 3$$

Künstlich Neuronale Netze→ KNN-Beispiel (6/9)

- Die erste Forward Propagation hat eine Abweichung von 0,29 ergeben.
 - Diese Abweichung berechnet sich aus der Differenz von dem gewollten Ausgabewert (in diesem Beispiel der Wert 1 für einen "normalen" Prozess) und dem aktivierten Ausgabewert des KNNs.

Abweichung =
$$1 - S(net_4)$$

- Diese Abweichung wird nun zurück gerechnet, damit die Kantengewichte entsprechend angepasst werden können.
 - In diesem Beispiel wird die folgende Ableitung der Sigmoidfunktion für die benötigte Änderungsrate der Kantengewichte verwendet:

$$S'(t) = S(t) * (1 - S(t))$$

Künstlich Neuronale Netze→ KNN-Beispiel (7/9)

Die konkrete Änderungsrate wird dann wie folgt berechnet:

$$\Delta = S'(net_4) * Abweichung$$

 Die neuen Kantengewichte zwischen der verdeckten Schicht und der Ausgabeschicht werden mit der folgenden Formel berechnet:

$$W3, j_{new} = W3, j + \frac{\Delta}{S(net_j)} 1 \le j \le 3$$

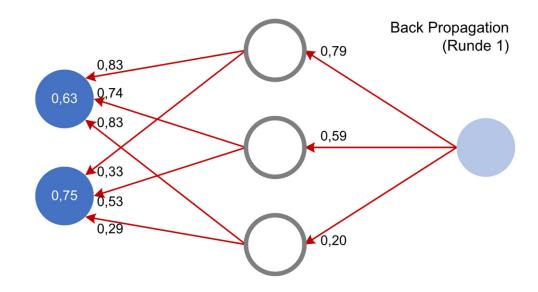
Alle neuen Kantengewichte zwischen der Eingabeschicht und der verdeckten Schicht lassen sich nun folgendermaßen berechnen:

$$Wi, j_{new} = \frac{\Delta}{W3, j} * S'(net_j), 1 \le i \le 2, 1 \le j \le 3$$

⊚ Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ KNN-Beispiel (8/9)

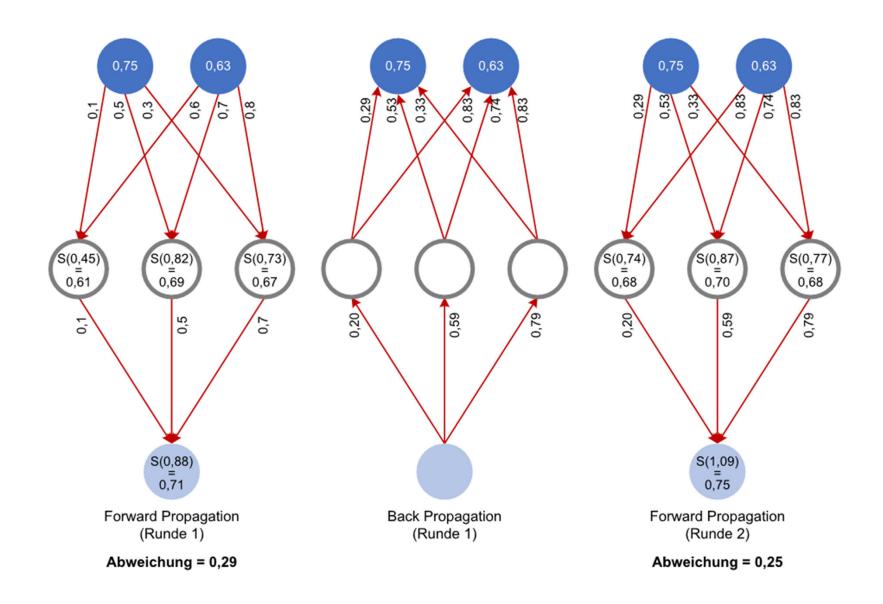
Folgendes Ergebnis ergibt sich für die neu berechneten Kantengewichte:



- Mit den neu berechneten Kantengewichten kann nun eine erneute Forward Propagation durchgeführt werden.
- In der zweiten Runde kann festgestellt werden, dass die Abweichung auf 0,25 reduziert werden konnte.

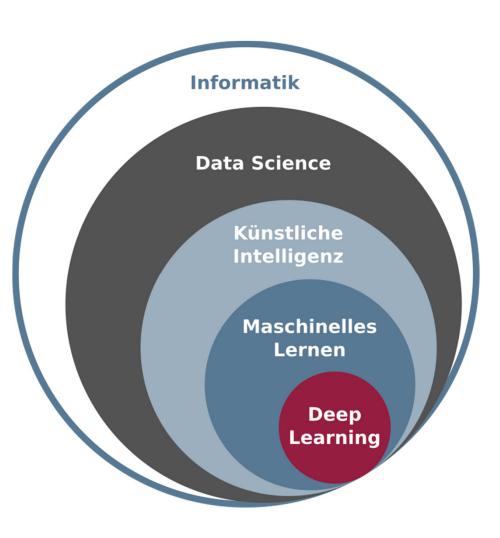
© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstlich Neuronale Netze→ KNN-Beispiel (9/9)



Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Einordnung → Deep Learning



- Maschinelles Lernen wird noch effektiver durch:
 - Deep Learning
- Deep Learning ist eine Spezialisierung des maschinellen Lernens
- Nutzt vorwiegend neuronale Netze
 - Erlaubt unvollständige Daten
 - Erlaubt Rauschen und Störungen
- Kommt dem "menschlichen Gehirn" am nächsten

Deep Learning→ Architekturen (1/2)

- Forschung durch leistungsfähigere Hardware und steigende Datenverfügbarkeit in letzten Jahren deutlich gestiegen
- Neben klassischen Feed-Forward-Netzen auch Recurrent Neural Networks handhabbar
 - Kanten können auch zu vorherigen Schichten zurückführen
- Hohe Anzahl an Schichten, welche nach Funktionsweise zusammengefasst werden können
- Verschiedene Architekturen haben sich für unterschiedliche Problemstellungen als besonders effektiv gezeigt
- Bessere Skalierbarkeit

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule,

Deep Learning→ Architekturen (2/2)

Convolutional Neural Networks (CNN):

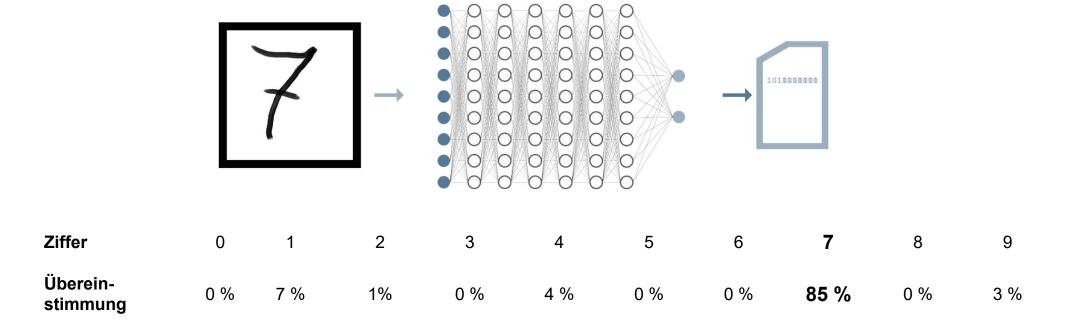
- Zweidimensionales "Fenster" wird über Daten "geschoben"
- Einfluss durch benachbarte Felder wird berücksichtigt
- Besonders erfolgreich bei Computer Vision (z.B. Handschrift-Erkennung)

Long Short-Term Memory Networks (LSTM):

- Spezialform eines Recurrent Neural Networks
- Neuronen können Zustände über einen längeren Zeitraum speichern
- Besonders erfolgreich bei gesprochener Sprache (Alexa, Siri, usw.)

⊚ Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Deep Learning→ Handschrifterkennung: Beispiel



Input-Daten (1):

 Bilddatei mit einer Zahl (7), die klassifiziert werden soll

ML-Algorithmus (2):

- Eingabedaten werden in den künstlichen Neuronen in den Schichten verarbeitet
- Z.B. mit Hilfe eines Convolutional Neural Network (CNN)

Output (3):

 Tabelle mit einer Verteilung der Wahrscheinlichkeiten für eine Übereinstimmung mit einer Ziffer

KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

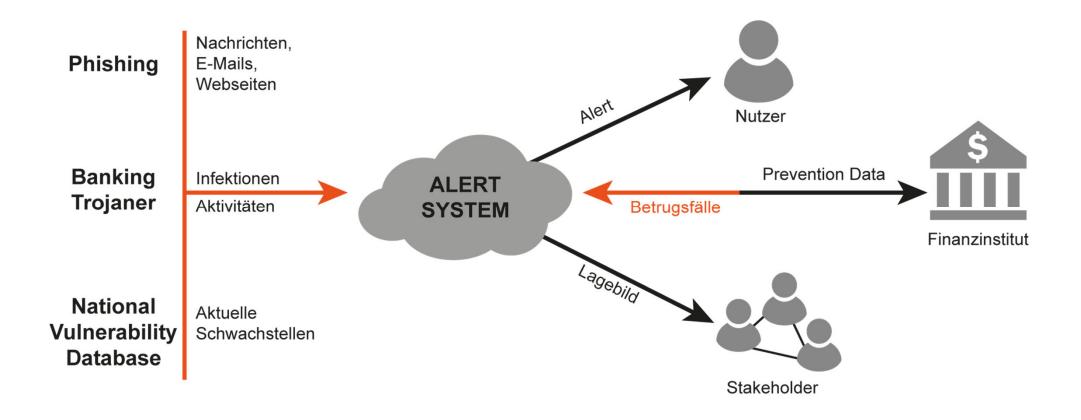
Anwendungen von KI und CS→ Alert-System für Online-Banking

- Wie könnte eine Lösung aussehen?
 - Tagesaktuelle Warnungen bei erhöhter Gefahrenlage (Online-Banking)
 - → damit der Bankkunde und die Bank reagieren können
 - Aufklärung der Nutzer, wenn Gefahren vorliegen
 - → damit der Bankkunde sich "richtig" verhalten kann

- Ansatz des Alert-Systems
 - Sicherheitskennzahlen zum Betrug identifizieren
 - Mittels KI Gefahrenlage bestimmen
 - Nutzer und Bank Warnen

© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Alert-System für Online-Banking → Konzept

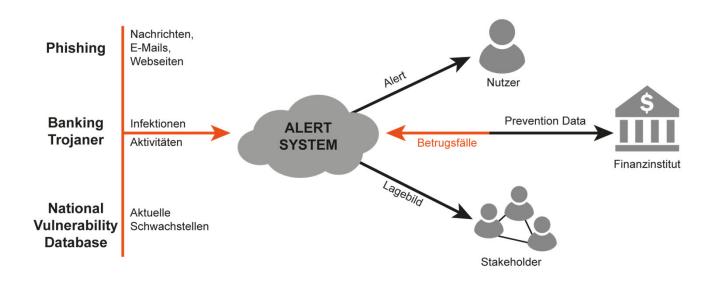


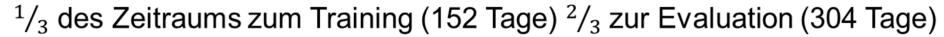
Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Alert-System für Online-Banking

→ Zahlen für den Testzeitraum von 456 Tage

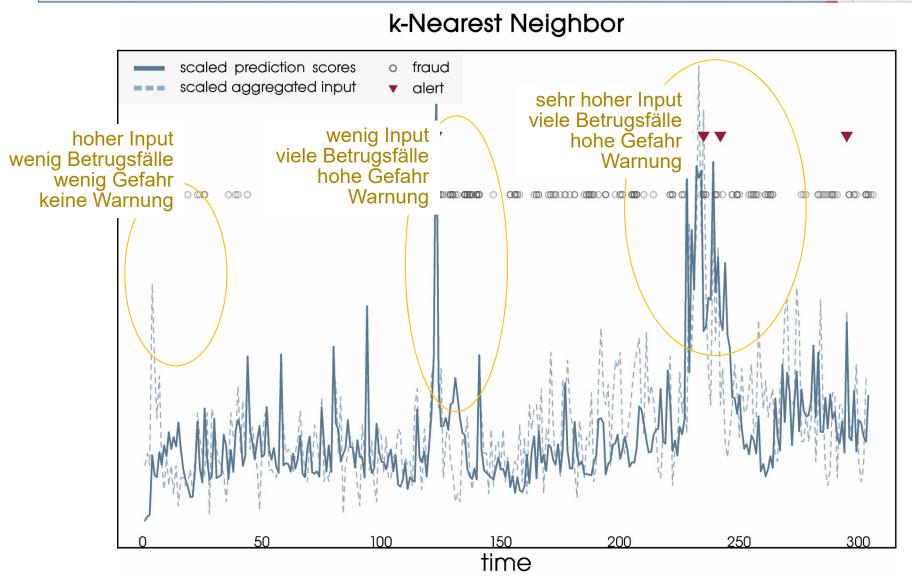
- 1.904 Nachrichten (Phishing-Angriff) "Stackoverflow-Netzwerk"
- 5.589 **E-Mail** (Phishing-Angriff) "Spam Archive"
- 2.776 Phishing-Webseiten "PhishTank"
- 23.184 Infektionen von Banking-Trojaner (Malware) Anti-Malwarehersteller
- 875 relevante **Schwachstellen** (NVD)
- 459 erfolgreiche **Betrugsfälle** im Online-Banking Bankengruppe





© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

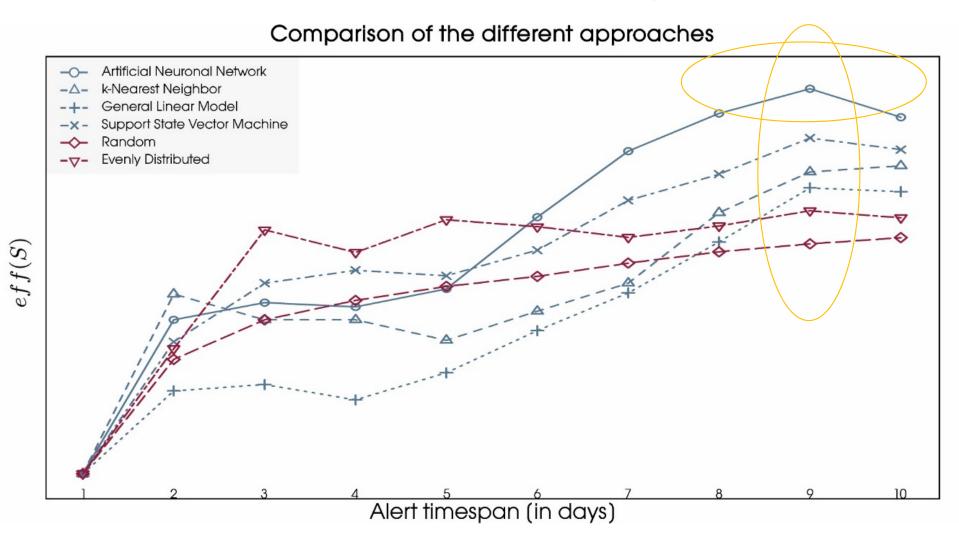
Ergebnis einschätzen → k-Nearest Neighbor



© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

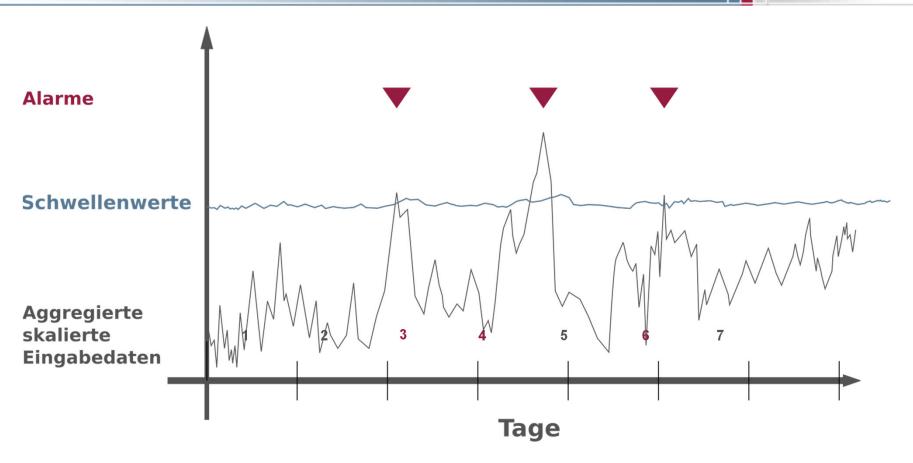
Ergebnisse → Vergleich der verschiedenen Verfahren

"Aber, drei Mal soviel Zeit für das Trainieren"



Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Alert-System für Online-Banking → Ergebnis

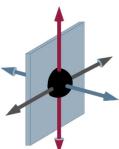


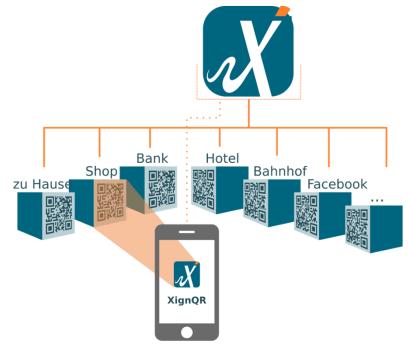
Output:

- Vorhergesagte Bedrohungswerte überschreiten an den Tagen 3, 4 und 6 den für dieses Alert-System eingestellten Schwellenwert
- da Schwellenwert überschritten wurde, wird ein Alarm ausgelöst

Anwendungen von KI und CS (2/2) → Passive Authentifikation - XignQR

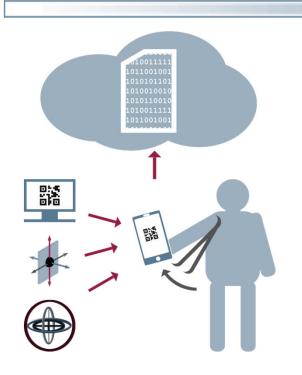
- Ein Nutzer wird automatisiert an der Art und Weise der Nutzung beim QR-Code Scannen erkannt.
- Während das gesamten Vorgangs werden passive biometrische Bewegungsdaten erfasst.
- Datenerfassung durch
 - Beschleunigungssensor
 - Lagesensor

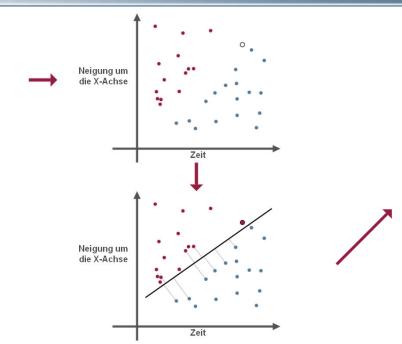




Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

Passive Authentifikation - XignQR → Support-Vector-Machine (SVM)





Input-Daten:

- Nutzer holt Gerät aus Hosentasche
- Erfassen von
 Lage und
 Beschleunigung
 des Smartphones

ML-Algorithmus:

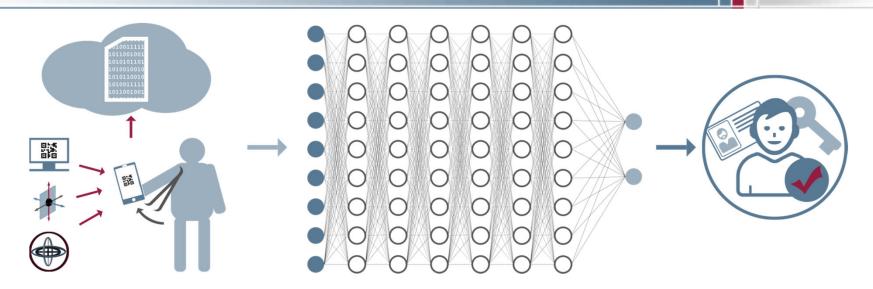
- Daten werden anhand der Hyperebene/des Modell klassifiziert
- rote Übereinstimmung ist positive Klassifizierung
- blau eine negative Klassifizierung (bspw. anderer Nutzer)

Output:

 Authentisierung ist entweder erfolgreich oder schlägt fehl (95 %)

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Passive Authentifikation - XignQR → Neuronales Netz



Input-Daten:

 Lage und Beschleunigungsdaten des Nutzers werden erzeugt

ML-Algorithmus:

 Eingabedaten werden in den künstlichen Neuronen in den Schichten verarbeitet

Output:

Nutzer	Überein- stimmung
0	0,059 %
1	99,85 %
2	0,087 %

time, type, x, y, z 271, Accelerometer, -0.07606506, 9.173798, 3.6333618 277, Accelerometer, 1.0681152E-4, 9.146423, 3.5619507 279, Gyroscope, 0.027664185, 0.06774902, 0.02182006

[[5.9110398e-04 9.9853361e-01 8.7528664e-04]

Predicted Class [1]

Predicted Person: Sandra Kreis

KI für Cyber-Sicherheit→ Weitere Beispiele

- Logdatenanalyse
- Malware-Erkennung
- Security Information and Event Management (SIEM)
- Threat Intelligence
- Spracherkennung
- Bilderkennung (Ausweis, Video, ...)
- Authentifikationsverfahren
- Fake-News
- IT-Forensik
- Sichere Softwareentwicklung
- . . .

KI für Cyber-Sicherheit→ Inhalt

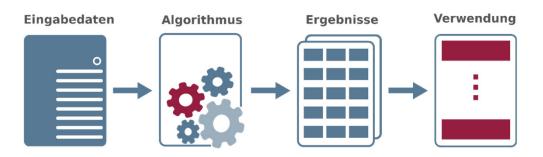
- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Künstliche Intelligenz / ML→ Angriffe

- "Hacker" greifen an und manipulieren den Workflow
 - die Eingabedaten (Input)
 - gezielte Manipulation
 - die Algorithmen
 - die Ergebnisse (Output)
 - die Verwendung

 Angriffe auf die Privatsphäre (personenorientierte Daten, die verwendet werden)



Vertrauenswürdigkeit

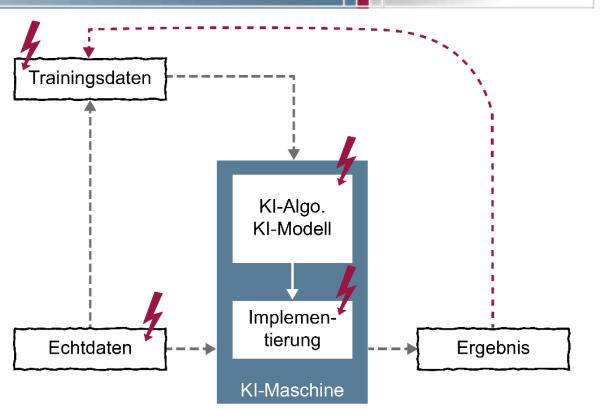
→ Qualität der Umsetzung

Stand der Technik an IT-Sicherheitsmaßnahmen zum Schutz

- → der Daten (Training, Echt, Ergebnis),
- → der KI-Maschine und
- → der Anwendung

Schutzziele:

- → Integrität
 (Erkennen von Manipulation der Daten)
- → Vertraulichkeit (Wahrung von Geschäftsgeheimissen)
- → Datenschutz (Schutz von personenbezogenen Daten)
- → Verfügbarkeit (der Anwendung und Ergebnisse)



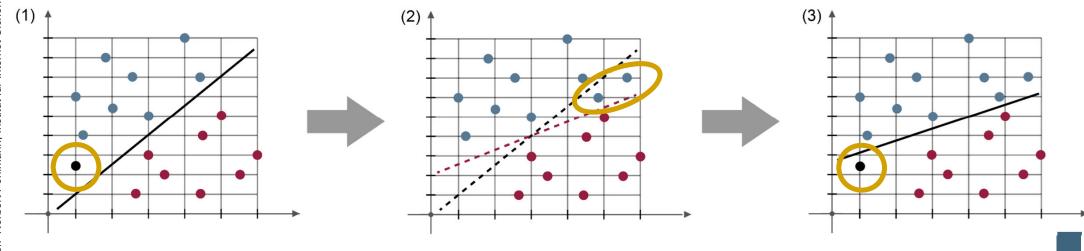
Nutzung einer qualitativ hochwertigen KI-Technologie

Zusammenarbeit von erfahrenen KI- und Anwendungsexperten

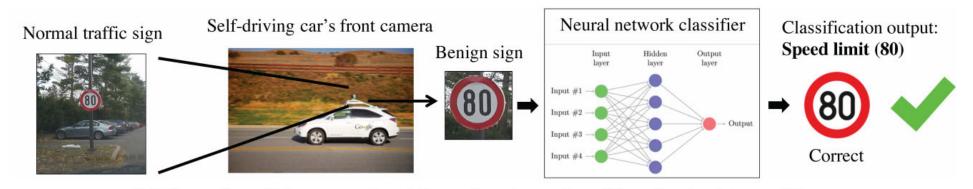
Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälisch

Angriffe auf maschinelles Lernen → Manipulation von Trainingsdaten

- (1) Normale Klassifizierung eines neuen Inputs. (neuer schwarzer Punkt gehört zur blauen Klasse)
- (2) Beispiel: Manipulation von Trainingsdaten
 - Falsch klassifizierte Daten werden in den Trainingsprozess als Angriff einschleusen (zwei weitere blaue Punkte).
 - Dadurch wird die Gerade des Modells zur Klassifizierung manipuliert (Gerade wird flacher).
- (3) Damit kann ein Angreifer für falsche Klassierungen sorgen.
 (jetzt gehört der neuer schwarzer Punkt zur roten Klasse)



Angriffe auf maschinelles Lernen → Manipulation von Verkehrszeichen



(a) Operation of the computer vision subsystem of an AV under benign conditions

(b) Operation of the computer vision subsystem of an AV under adversarial conditions

Fig. 1. **Difference in operation of autonomous cars under benign and adversarial conditions**. Figure 1b shows the classification result for a drive-by test for a physically robust adversarial example generated using our Adversarial Traffic Sign attack.

Quelle: https://arxiv.org/abs/1802.06430

KI für Cyber-Sicherheit→ Inhalt

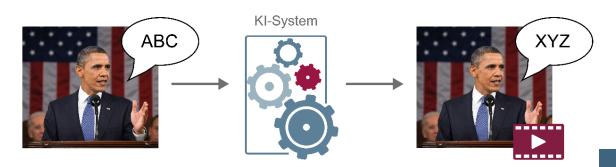
- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkircher

Künstliche Intelligenz→ Angreifer verwenden KI

"Hacker" verwenden KI ebenfalls für ihre Zwecke (Dual-Use)

- Schnelle Schwachstellensuche (schneller Angreifen, neue Angriffsvektoren)
- Social-Engineering (Chatbots, ...)
- Passwortknacker
- Neue Angriffsstrukturen und Vorgehensweisen
- Videomanipulation (Deep-Fake)
 - "Fake Obama Video"
 - "Make Putin Smile Video"



Künstliche Intelligenz→ Allgemeine Herausforderungen

- Datenschutz (persönliche Daten ... Europäische Datenschutz-Grundverordnung)
- Selbstbestimmung ("human in the loop")
- Diskriminierung (ausgeglichene Daten ... Problem: gibt es nicht)
 Frau/Mann, Herkunft, Ausbildung, ...
- Vertrauenswürdigkeit der Daten und Ergebnisse→ KI-Siegel

Intelligente Algorithmen

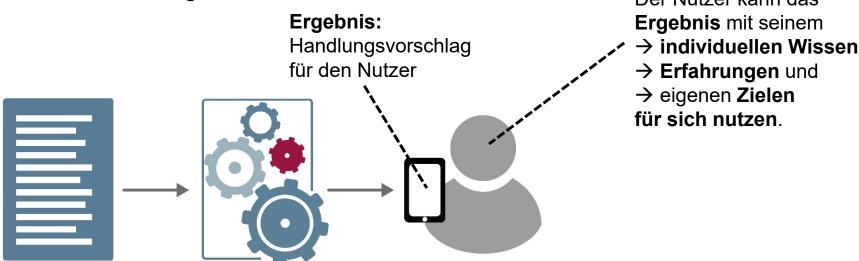
- → Chancen und Risiken
- Individuelles Wissen und Komplexität des denkenden Menschen sind Algorithmen überlegen! +
- Algorithmen können schneller Wissen aus vorhandenen Daten auswerten! +
- Individuelles Wissen + Algorithmen Wissen = +++

- Praktische Probleme: Medizin / Watson
 - Diagnostik (Maschine)
 - Haftung (Mensch)

Vertrauenswürdigkeit→ Nachvollziehbarkeit der Ergebnisse

- "Keep the human in the loop"
 - KI-Ergebnis muss als Handlungsempfehlung für den Nutzer verstanden werden.

 Damit wird die Selbstbestimmtheit der Nutzer gefördert und die Vertrauenswürdigkeit erhöht.



- Automatisierte Anwendungen (z.B. autonomes Fahren)
 - Simulation, Test und Validierung
 - Verantwortung, Haftung und Versicherung

Forschungsfragen

if(S) internet-sicherheit.

→ Sicherheit/Vertrauenswürdigkeit von KI (1)

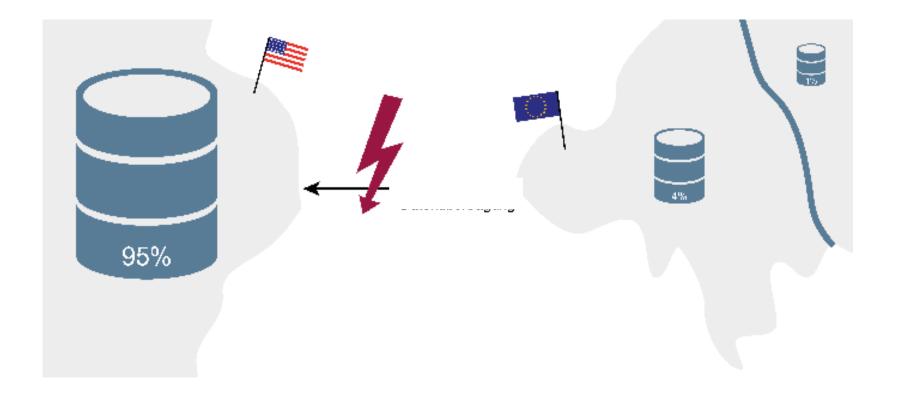
- Sicherheit und Vertrauenswürdigkeit der verwendeten Daten:
 - Sicherheitsinfrastruktur für
 - Integrität (Erkennung von Manipulationen an Daten)
 - Vertraulichkeit (Schutz von Geschäftsgeheimnissen)
 - Datenschutz (Schutz von persönlichen Daten)
 - Verfügbarkeit (der Anwendung und Ergebnisse)
- Sichere und vertrauenswürdige Implementierung:
 - Cybersicherheitsmechanismen für den Schutz von
 - Daten,
 - KI-Algorithmen und
 - Anwendungen

Forschungsfragen

- Nachvollziehbarkeit von Entscheidungen
 - Infrastrukturen für die Überprüfung von Verantwortungen (Blockchain, PKI, ...)

Forschungsfragen → Souveränität

- Wir brauchen leistungsfähige KI-Infrastrukturen, um die digitale Souveränität aufrechtzuerhalten.
- Verfügbarkeit von Daten.



Forschungsfragen

if(S) internet-sicherheit.

→ Austausch von sicherheitsrelevanten Daten

- Nützlich für bessere Ergebnisse!
- Wie kann der Austausch attraktiv gestaltet warden?
- Was sind die Nachteile?

..

KI für Cyber-Sicherheit→ Inhalt

- Ziele und Ergebnisse der Vorlesung
- Einordnung
- Maschinelles Lernen
- Künstliche Neuronale Netze
- Anwendungen KI und Cyber-Sicherheit
- Angriffe auf maschinelles Lernen
- Herausforderungen
- Zusammenfassung

KI für Cyber-Sicherheit→ Zusammenfassung (1/2)

- KI/ML ist eine wichtige Technologie für die Zukunft, auch für Cyber-Sicherheit
 - Erkennen von Bedrohungen, Schwachstellen, Angriffen, ...
 - Erkennen von Nutzern (Authentifikation)
 - Unterstützung von Cyber-Sicherheitsexperten
 - · ...
- Sehr gute Daten sind das Wichtigste
 - Neue, bessere Sensoren (Daten mit sehr gutem Inhalt)
 - Zusammenarbeit und Austausch von Daten
 - **.** . . .
- Technologische- und Daten-Souveränität wird immer wichtiger

Künstliche Intelligenz für Cyber-Sicherheit

- Vorlesung Cyber-Sicherheit -

Prof. Dr. (TU NN)

Norbert Pohlmann

Institut für Internet-Sicherheit – if(is) Westfälische Hochschule, Gelsenkirchen http://www.internet-sicherheit.de

Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Anhang / Credits

Wir empfehlen

Kostenlose App securityNews

- 7. Sinn im Internet (Cyberschutzraum)
 https://www.youtube.com/cyberschutzraum
- Master Internet-Sicherheit
 https://it-sicherheit.de/master-studieren/
- Cyber-Sicherheit
 Das Lehrbuch für Konzepte, Mechanismen,
 Architekturen und Eigenschaften von Cyber-Sicherheitssystemen in der Digitalisierung",
 Springer Vieweg Verlag, Wiesbaden 2019
- https://norbert-pohlmann.com/cyber-sicherheit/

Besuchen und abonnieren Sie uns :-)

WWW

https://www.internet-sicherheit.de

Facebook

https://www.facebook.com/Internet.Sicherheit.ifis

Twitter

https://twitter.com/ ifis

YouTube

https://www.youtube.com/user/InternetSicherheitDE/

Prof. Norbert Pohlmann

https://norbert-pohlmann.com/

Quellen Bildmaterial

Eingebettete Piktogramme:

Institut f
ür Internet-Sicherheit – if(is)

Der Marktplatz IT-Sicherheit

(IT-Sicherheits-) Anbieter, Lösungen, Jobs, Veranstaltungen und Hilfestellungen (Ratgeber, IT-Sicherheitstipps, Glossar, u.v.m.) leicht & einfach finden. https://www.it-sicherheit.de/

Literatur→ **Artikel / Bücher**

- C. Paulisch, N. Pohlmann, R. Riedel, T. Urban: "Sei gewarnt! Vorhersage von Angriffen im Online-Banking". In Proceedings der "DACH Security 2018 Konferenz", syssec Verlag, 2018 https://norbert-pohlmann.com/wp-content/uploads/2019/02/384-Sei-gewarnt-Vorhersage-von-Angriffen-im-Online-Banking-Prof.-Norbert-Pohlmann.pdf
- N. Pohlmann: "Künstliche Intelligenz und Cybersicherheit", Diskussionsgrundlage für den Digitalgipfel, 2018

https://norbert-pohlmann.com/wp-content/uploads/2019/02/Künstliche-Intelligenz-und-Cybersicherheit-Diskussionsgrundlage-fürden-Digitalgipfel-2018-Prof.-Norbert-Pohlmann.pdf

N. Pohlmann: "Künstliche Intelligenz und Cybersicherheit - Unausgegoren aber notwendig", IT-Sicherheit – Fachmagazin für Informationssicherheit und Compliance, DATAKONTEXT-Fachverlag, 1/2019

https://norbert-pohlmann.com/wp-content/uploads/2019/04/393-Künstliche-Intelligenz-und-Cybersicherheit-Unausgegoren-abernotwendig-Prof.-Norbert-Pohlmann.pdf

- U. Coester, N. Pohlmann: "Ethik und künstliche Intelligenz Wer macht die Spielregeln für die KI?", IT & Production Zeitschrift für erfolgreiche Produktion, TeDo Verlag, 2019 https://norbert-pohlmann.pdf
- N. Pohlmann: "Sicherheit und Vertrauenswürdigkeit von KI-Systemen", Thesen und Handlungsempfehlungen, Thesenpapier für die Enquete-Kommission KI des Deutschen Bundestagen, 2019

https://norbert-pohlmann.com/wp-content/uploads/2019/07/Thesenpapier-Enquete-Kommission-KI-Datensicherheit-Prof.-Norbert-Pohlmann-03_06_19.pdf

N. Pohlmann: "Cyber-Sicherheit – Das Lehrbuch für Konzepte, Mechanismen, Architekturen und Eigenschaften von Cyber-Sicherheitssystemen in der Digitalisierung", ISBN 978-3-658-25397-4; 594 Seiten, Springer-Vieweg Verlag, Wiesbaden 2019