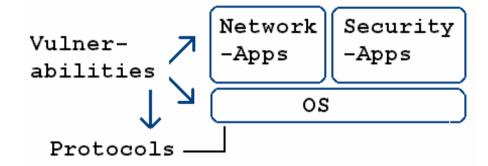
Linux vs Microsoft (Un-)Sicherheit

von

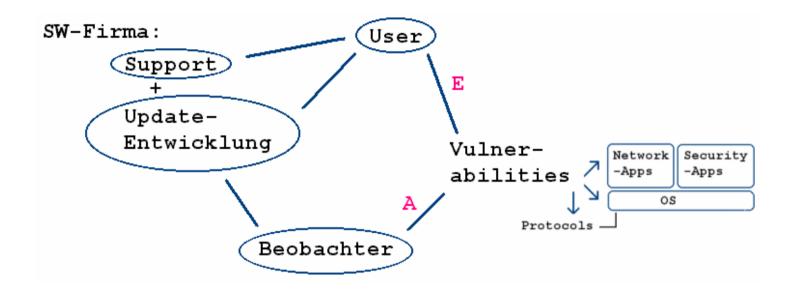
Sebastian Kinzler,

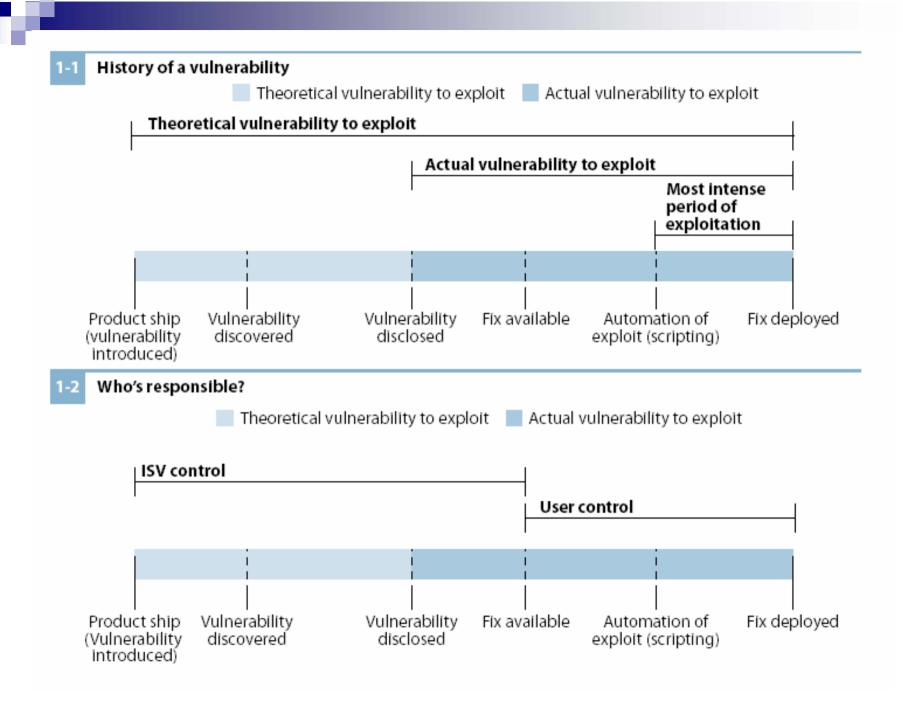
Andreas Tschersich



Inhalt

- Einleitung
- Update-Kreislauf
- Zugriffskontrolle
- Angriffe
- Sans Top 20 Unsicherheiten
- Studie von Forrester Research + Meinung von Andreas
- Closed versus Open-Source
- Studie von Nicholas Petreley
- Linux + Windows-Sicherheitskonzepte
- Meinung von Sebastian


1) Einleitung


- Unsicherheiten (Sicherheitslücken) sind auf Anwendungssoftware-, Betriebssystem-, und Protokollebene vorhanden.
- Kann eine Verletzlichkeit einer Ebene durch die anderen Ebenen sowie Schutzmassnahmen nicht ausgeglichen werden, so sind erfolgreiche Angriffe möglich.
- Network-Apps interpretieren und generieren Nachrichten zu User-Zwecken.
- Security-Apps sollen bestehende Unsicherheiten aufspüren bzw. ausgleichen (entgegenwirken), z.B. Port Scanner, Firewall
- Betriebssysteme werden entweder auf Workstations (PCs) oder Serversystemen eingesetzt. Dazu gibt es spezielle Versionen. Windows XP, Suse Linux 9.1; Windows Server 2003, Red Hat Enterprise Linux AS V3

2) Update-Kreislauf

- Solange kein Update vorliegt und der Unsicherheit nicht durch andere Massnahmen entgegengewirkt werden kann, dürfte der betroffene Service eigentlich streng sicherheitstechnisch nicht mehr genutzt werden!
- Updates ändern die Konfiguration, fügen Dialoge und Funktionalität hinzu, verbessern die (Eingabeauswerte-) Logik + liefern neue Unsicherheit

JPEG Processing (GDI+)

Published: September 14, 2004 | Updated: October 12, 2004

n is	newly disc	security update for September 2004 addresses covered issues in JPEG processing technology. This Security Bulletin MS04-028				
С		Severity	Software affected	Update number		
ir	nstall th	Critical	 Windows XP Windows XP Service Pack 1 (SP1) Windows Server 2003 Windows Journal Viewer 	830348 831931 831932 832332 833987 833989		

SUSE Security Announcement

Package: xshared, XFree86-libs, xorg-x11-libs

Announcement-ID: SUSE-SA:2004:041

Date: Wednesday, Nov 17th 2004 15:00 MET

8.1, 8.2, 9.0, 9.1, 9.2 SUSE Linux Desktop 1.0

SUSE Linux Enterprise Server 8, 9

Novell Linux Desktop 1.0

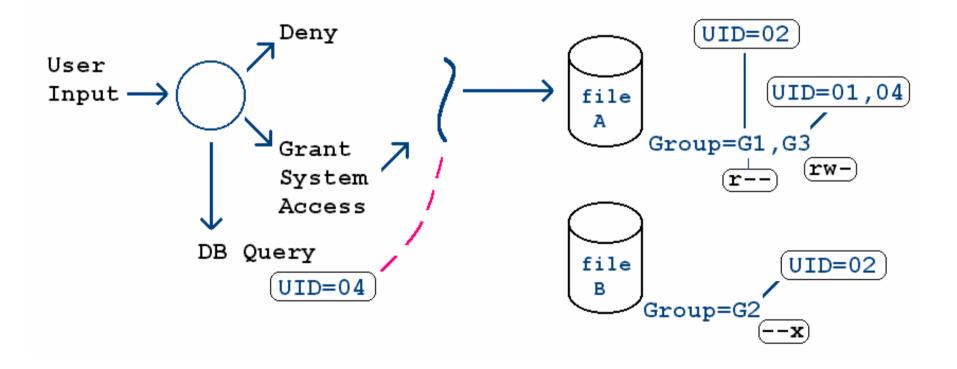
Vulnerability Type: remote system compromise

Severity (1-10): 8
SUSE default package: yes
Cross References: none

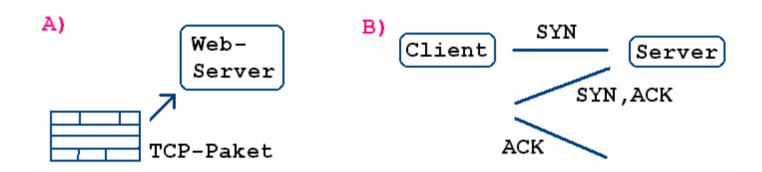
Content of this advisory:

Affected products:

1) security vulnerability resolved:


- <u>www.microsoft.com</u> -> Security: Current Security Updates, Recent Incidents
 + Automatic Update Services
- http://www.suse.de/de/security/ -> Security Announcements + YOU (Yast Online Update)
- Zeitdauer von der Bekanntgabe einer Unsicherheit bis zur Bereitstellung eines Updates: Microsoft 25 Tage, Linux-Redhat 57 Tage
- Wie einfach ist das System (sicher) zu konfigurieren?

3) Zugriffskontrolle


Authentication Procedure

Enforcing Access Privileges

4) Angriffe - DoS

- Ein Angreifer nutzt Pakete mit Werte-Kombinationen, die im regulären Betrieb nicht vorkommen. (Control logic performs endless looping?)
- Bei B snifft der Angreifer während des 3-Way Handshakes, liest die unverschlüsselten IP, PORT, SEQ und ACK-Werte aus und sendet unmittelbar ein RST-Paket an den Server, das noch vor dem ACK des Clients eintrifft.
- Windows NT Server: http://www.someiismachine.com/../../..
 (Null Pointer from File Handle?)

Angriff auf Banktransaktion (Trojaner):

- Anstatt gesendete JPEG-Bilddaten zu interpretieren führt der bildverarbeitende Prozess per Buffer Overflow ein komprimiertes Executable File aus.
- Das File dekomprimiert sich in 2 Teile: Filedropper + Body
- Der Filedropper installiert eine Win32 dll unter C:\Windows\System32\ als ein BHO (Browser Helper Object) unter IE.
- Erzeugte BHO (genutzt während der Entwickung) haben Zugang zu allen Ereignissen und Eigenschaften einer Browsing Session des IE.
- Bei jeder ausgehenden Kommunikation über HTTPS zu URLs mit den Strings ,commerzbank,...' liest das BHO die POST/GET Daten bevor sie SSL verschlüsselt werden.
- Das BHO verschlüsselt selber die Daten, baut eine HTTP-Verbindung zum Angreifer auf und sendet die Informationen.
- Zusätzlich unterbindet das BHO jede weitere Kommunikation mit dem Bankserver.
- Wie viele Sicherheitslücken werden hier ausgenutzt?
- http://isc.sans.org/presentations/banking_malware.pdf
- Datagram Filtering

Code Execution on Stack (Buffer Overflow):

```
void netAppFunction(char *inputString){
    char buf[4];
    strcpy(buf, inputString); // copy until NULL char!
}

void main(){
    char attack_data[7];
    // initialize attack_data
    callNetAppFunction(attack_data);
}
```

- Neben Scriptausführungen eine sehr häufig ausgenutzte Unsicherheit! (Prozessrechte beachten)
- Windows XP mit SP2, Server 2003 mit SP1 und Linux unterstützen in Kombination mit den neusten CPUs (AMD, Intel) Execution Disable (XD)

5) Sans Top 20

Die überwiegende Anzahl erfolgreicher Angriffe nutzt Schwachstellen ein oder mehrerer folgender Services:

Windows:

Web Servers & Services

Workstation Service

Remote Access Services

SQL Server

Authentication

Web Browsers

File Sharing Apps

LSAS

Mail Client

Instant Messaging

Unix:

BIND System

Web Server

Authentication

Version Control Systems

Mail Transport Service

SNMP

Open Secure Sockets Layer

NFS, NIS

Databases

Kernel

- -> Beide Betriebssysteme sind unsicher.
- www.sans.org -> Top 20 List

Sicherheits-Konzept:

- Analyse: Welcher User benötigt welchen Dienst? Welche Nachrichten müssen über welche Grenzen hinweg ausgetauscht werden?
- Entwerfen einer passenden Netzwerk-Topologie (Zonen-Aufteilung durch Firewalls + Spezialisierte Server: Mail, Web, DNS)
- Die benötigten Dienste identifizieren und nur die entsprechenden SW-Komponenten installieren.
- Dabei sichere Implementierungen und Protokolle verwenden (Firefox IE, Apache Web Server IIS)
- Gruppen verwenden, um Datenoperationen von Prozessen einzuschränken.
 (Web-Server Programm und Seiten von unterschiedlichen Usern)
- Aktivierte Dienste sicher konfigurieren (Scriptsprachen deinstallieren/ deaktivieren/einschränken: ActiveX, Javascript)
- Prinzip: Alles sperren und erst bei Bedarf gezielt freigeben
- Nur vertrauenswürdige email Attachements + Downloads nutzen Input immer auf Viren scannen
- Nur die benötigten Kommunikations-Wege per Firewall erlauben.

- Tools einsetzen: Network Traffic + Access Logging, SW- und Port-Scanner verwenden (MBSA: installierte SW + Konfiguration)
- Selber Angriffstools aus dem Internet anwenden. (PWD-Cracker)

Daraus folgt:

- Ein optimal konfiguriertes Betriebssystem mit eigentlich mehr Sicherheitslücken kann sicherer sein, als ein schlecht konfiguriertes mit ausgangsseitig weniger Sicherheitslücken.
- Die Hersteller der Betriebssysteme und Anwendungen gaben bisher der uneingeschränkten Funktionalität gegenüber der Sicherheit den Vorzug.
- Jeder aktive Service bringt aber neue Sicherheitslücken mit ein, die wieder als Ziele für Angriffe dienen können. Angreifer machen genau diese ausfindig während sie ihre Angriffe vorbereiten.

6) Studie von Forrester Research + Meinung von Andreas

3-2 Percentage of high-severity flaws and of flaws fixed								
Platform	Number of total flaws	Number of high- severity flaws	% of flaws with high severity	Number of flaws fixed	% of flaws fixed			
Microsoft	128	86	67%	128	100.0%			
Red Hat	229	128	56%	228	99.6%			
Debian	286	162	57%	275	96.2%			
MandrakeSoft	199	120	60%	197	99.0%			
SUSE	176	111	63%	172	97.7%			

Source: Forrester Research, Inc.

Widersprüchliche Auswertungen von Vulnerability-Report Datenbanken:

http://download.microsoft.com/download/9/c/7/9c793b76-9eec-4081-98ef-f1d0ebfffe9d/LinuxWindowsSecurity.pdf

http://www.theregister.co.uk/security/security_report_windows_vs_linux_

Bewertung nach

- ☐ Gefahr der Ausnutzung (Experten / Basiswissen über OS und Programmierung, Mittelschwere Anpassungen an öffentlichem Basiscode, Öffentliches Angriffskit, Einfache Eingabe)
- Schadenspotenzial (Performance-Minderung; Dateien eines Users (/ Admin) lesen, verändern + löschen; Stoppen der Zielmaschiene; Complete Takeover)
- Microsoft hat höchsten Markanteil (Heise 2004: 16% Linux-Server in Europa; Gartner 2003: 96% aller Verkaufsgeräte mit Windows BS) -> Anreiz für Angreifer
- Keine eindeutigen Empfehlungen von CERT/DHS, BSI, NIST, NISCC

Meine Meinung:

□ Forrester: Both Windows and the four key Linux Distributions can be deployed securely.

7) Open Source versus Closed Source

Vorteile von Open Source:

- Sicherer, da Quellcode einsehbar
 - Jeder kann ihn verbessern
 - Tausende können Fehler entdecken und beheben
- Wird immer ausführlich getestet
 - □ z.B. Beta-Versionen vom Linux-Kernel
 - Testszenario bei Closed Source fasst nicht erreichbar
- Programmierer nicht unter Zeitdruck
- Programmierer müssen keine Probleme ignorieren
- Sie haben nur ein 7iel
 - Erstellung eines zuverlässigen und sicheren Produktes da sie es selbst einsetzen möchten.
 - Unsichere Systeme werden nicht genutzt oder sicher gemacht

7) Open Source versus Closed Source

Nachteile von Open Source:

- Unkoordinierte Fehlersuche und Entwicklung
- Support nicht garantiert
- Teilhabende verfügen nur zum Teil über Expertenwissen

Vorteile von Closed Source (Meinung von Microsoft):

- Organisierte Entwicklung und Fehlersuche
- Quellen stehen den Hackern nicht zur Verfügung
- Shared Source Program
 - □ Bei wirklichem Interesse bietet Microsoft die Möglichkeit Einblick in den Quellcode zu bekommen.
 - Grosse Unternehmen oder Universitäten können so Probleme ihrer Software bei der Integration in Microsoft-Plattformen erkennen

Kritische Sicherheitslücken:

Microsoft	Red Hat (Linux)
38% (MS-Standards)	10%
50% (gleiche Standards)	
(CERT-Datenbank):	(CERT-Datenbank):
39 von 40	3 von 40 ("Red Hat")
	6 von 40 ("Linux")

Linux nur sicherer durch geringere Verbreitung!?:

Widerspruch bei der Betrachtung des Apache-Webservers:

- Populärste Web-Server-Software im Internet
 - □ Laut Netcraft benutzen 68% aller Webseiten den Apache
 - □ Nur 21% benutzen Microsoft IIS
- Wenn Hacker wirklich das am weitesten verbreitete System angreifen würden:
 - □ Es g\u00e4be mehr W\u00fcrmer und Viren auf dem Apache-Webserver und damit auch auf Linux
 - □ mehr Angriffe gegen Apache als gegen IIS
- Wir finden genau das Gegenteil vor:
 - □ IIS war lange Primärziel von Würmern und anderen Angriffen
 - ☐ Sie waren auch sehr erfolgreich
 - Code Red Wurm hat mit einem Pufferüberlauf 300.000
 IIS-Server infiziert
 - Verbreitung nur gestoppt da der Wurm selbst damit aufgehört hat

Randbemerkung: Apache ist Open Source, IIS nicht

RPC-Model:

- Windows hängt zu stark vom RPC-Model ab
- Der Remote Procedure Call (RPC) dient der Kontrolle eines entfernten Rechners und ist damit ein potenzielles Sicherheitsrisiko
- Windows-Benutzer können RPC nicht einfach deaktivieren
 - □ Teilweise können RPC-Ports mit einer Firewall blockiert werden
 - Windows hängt aber so stark vom RPC-Modell ab, das dies meist nicht möglich ist
- Bei Linux ist es im Prinzip möglich alle RPC-Services zu deaktivieren und trotzdem ein funktionierenden Desktop zu haben

monolytisch oder modular:

- Windows ist monolytisch
 - Die meisten Eigenschaften und Fähigkeiten sind in einer Einheit zusammengefasst
- Linux ist in den meisten Fällen modular
 - Die Kern-Eigenschaften und Fähigkeiten sind in eindeutige Schichten getrennt
 - □ Jede Schicht hat nur eingeschränkten Zugriff auf die Anderen
- Beispiel Grafikkartentreiber:
 - Bei Windows im Systemkern und bei Linux als Modul geladen
 - □ Ein Fehler kann bei Windows zum Komplettabsturz führen
 - □ Bei Linux kann ein Fehler nur den Desktop zum Absturz bringen, aber nicht das dahinter liegende System

9) Zusätzliche Linux-Sicherheitskonzepte

Change-Root

- Systemaufruf von Linux (chroot())
- □ Kann ausschließlich von Root verwendet werden
- Ändert das Root-Verzeichnis sämtlicher von ihm aufrufender Prozesse
- □ Aufgerufener Prozess weiß nicht das er im Change-Root läuft
- Das Change-Root ist also ein Unterverzeichnis innerhalb der kompletten Verzeichnisstruktur
- Hacker hackt den Prozess und steckt im Change-Root fest. Er kann damit nur Schaden im Change-Root anrichten
- □ Das restliche System bleibt geschützt
- Solch ein Change-Root kann auf das Mindeste an Funktionalität beschränkt werden, damit ein Hacker nur minimalen Schaden im Change-Root anrichten kann.

9) Zusätzliche Linux-Sicherheitskonzepte:

Paketfilter im Kernel

- Linuxsysteme besitzen seit langem einen Paketfilter
- □ Er ist im Kernel integriert
- □ Seit dem Kernel 2.4 ist der Paketfilter sogar "Stateful" sodass bereits aufgebaute Verbindungen berücksichtigt werden können
- ☐ Mit dem Tool "iptables" kann man dem Paketfilter komplexe Filterregeln zuweisen
- Es können damit sehr gute Firewallfunktionalitäten erreicht werden
- Damit kann ein Linux-System sehr gut geschützt werden um maximale Sicherheit zu gewährleisten

9) Interview mit Rich Kaplan:

Microsoft Vizepräsident für Sicherheitsangelegenheiten & Technologiemarketing

- Behaviour Blocking Technologie:
 - Verdächtige Aktivitäten von Applikationen erkennen und unterbinden
 - Windows-Messenger darf keine Dateien löschen
 - Notepad soll keine Emails versenden
- Windows und Rechte von Prozessen
 - Alle Prozesse sollen nur noch mit den wirklich benötigten Rechten laufen
- Für welche Produkte und wann diese Neuerungen da sein werden ist noch offen

10) Meinung von Sebastian

- Linux besitzt mehr Möglichkeiten ein System zu schützen
 - Verbunden mit einer wesentlich schlechteren Bedienbarkeit
- Für ein Server-System empfiehlt sich daher ein Linux-System
- Für ein Desktop-System kann aus Gründen der besseren Bedienbarkeit auf ein Windows-System zurückgegriffen werden
- Beide Systeme müssen von vorne herein sicher konfiguriert werden und es müssen immer die aktuellsten Patches aufgespielt werden, um eine hohe Sicherheit gewährleisten zu können

■ Fragen?