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ABSTRACT
In the modern Web, service providers often rely heavily on third
parties to run their services. For example, they make use of ad
networks to finance their services, externally hosted libraries to
develop features quickly, and analytics providers to gain insights
into visitor behavior.

For security and privacy, website owners need to be aware of
the content they provide their users. However, in reality, they often
do not know which third parties are embedded, for example, when
these third parties request additional content as it is common in
real-time ad auctions.

In this paper, we present a large-scale measurement study to
analyze the magnitude of these new challenges. To better reflect
the connectedness of third parties, we measured their relations in a
model we call third party trees, which reflects an approximation of
the loading dependencies of all third parties embedded into a given
website. Using this concept, we show that including a single third
party can lead to subsequent requests from up to eight additional
services. Furthermore, our findings indicate that the third parties
embedded on a page load are not always deterministic, as 50 %
of the branches in the third party trees change between repeated
visits. In addition, we found that 93 % of the analyzed websites
embedded third parties that are located in regions that might not be
in line with the current legal framework. Our study also replicates
previous work that mostly focused on landing pages of websites.
We show that this method is only able to measure a lower bound as
subsites show a significant increase of privacy-invasive techniques.
For example, our results show an increase of used cookies by about
36 % when crawling websites more deeply.
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1 INTRODUCTION
A majority of today’s online services are a combination of original
content and—to a non-negligible extent—third party resources [45].
Most notably, online advertising is embedded using external re-
sources that display ads to finance these services and to provide
them to users free of charge. Other third parties are included for
various means, e. g., libraries are used to develop services quickly, to
decrease loading times, and for analytical purposes. Consequently,
this leads to a highly dynamic Web with complicated dependencies
among all participants. This trend comes with the drawback that
some service providers might not be aware of which third parties
are delivered to customers in their name when users interact with
their website. Ultimately, third parties can pose risks to users, which
is obviously unintended by the service provider. For example, third
parties can create security problems (e. g., malvertising [28, 43, 44]),
might have negative privacy implications (e. g., trackers [1, 9, 10]),
or they can include content that might impact users in other neg-
ative ways (e. g., crypto miners [26, 41]). Services themselves re-
inforce these dynamics as they make use of different sets of third
parties in different sections and webpages. For example, news web-
sites often insert scripts to connect with social media below articles,
but not on the actual landing page. This raises the question of
whether This raises the question of whether previous studies that
exclusively measured the landing pages (e. g., [6, 9, 21, 34, 45, 50])
captured a complete and comprehensive view of the analyzed phe-
nomenon.

We perform a measurement study on 10,000 websites on theWeb
and analyze relations between third parties. We use the notion of
third party trees (TPT) as a metric for loading dependencies of all
third parties embedded into a given website. More specifically, a
TPT contains information on all third parties (TP) observed when
visiting a given website and accounts for the loading sequence of
each TP. Consider the following example: adidas.com embeds a
script which loads content from Adobe (3rd party). The script again
loads a script from Tealium (4th party), which also loads a script
fromAkamai (5th party). As a result, a TPT captures the hierarchical
structures of third parties on a given website and enables us to
study the typical characteristics and dynamic nature of the modern
Web. Furthermore, we show that embedding a single TP might
result in embedding a non-deterministic amount of additional TPs,
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which might pose privacy or security risks. Previous work in this
area has analyzed implications of the presence of multiple third
parties on websites. Recently, Ikram et al. [21] raised awareness for
the problem of implicit trust created by decency chains in website
embeddings. Earlier work focused on the extent of tracking (e. g., [6,
10, 45]), or on the used mechanisms (e. g., [1, 9, 29]), and again other
works on defense mechanisms (e. g., [36, 39]), or the effectiveness
of such (e. g., [14, 32, 34]). In this work, we want to asses in more
detail by whom third parties are embedded into websites and study
the extent of control service providers have on the embedded third
parties. Most importantly, we show that previous studies did not
measure the extent of the phenomenon extensively enough and
only measured a (not necessarily generalizable) lower bound of
included TP content. Our results show a significant increase in used
cookies (36 %) and tracking techniques (6 %) on subsites.
In summary, we make the following key contributions:

(1) We introduce the concept of third party trees (TPTs) that
reflects all third parties and dependencies when loading a
website. Utilizing TPTs, we show that some TPs load several
further partners and that those are not always deterministic
and possibly in conflict with current legislation.

(2) We show that only measuring the traffic generated by land-
ing pages of a website or only a few subsites leads to the risk
of only capturing a (potentially limited) subset of the loaded
third parties. This implies that the obtained results might be
biased and not generalizable. For example, our study indi-
cates that subsites use substantial more cookies (over 45 %)
than the site’s landing pages.

(3) Using our data, we try to replicate previous work to test if
they only measured an incomplete view of their studied phe-
nomenon and show that most privacy-invasive technologies
occur more often on subsites.

2 BACKGROUND
Before introducing our approach, we briefly describe third party
usage and outline the privacy implications of those.

2.1 Third Party Usage
Web services make use of resources hosted by third parties for
various means. Everyday use cases for third-party usage are li-
braries used for web development, the integration of social media
content (e. g., Facebook Like button), to display ads on websites,
or to increase the service’s performance (e. g., using cached fonts).
Often these third parties are embedded by adding JavaScript code
or an iframe element into the website. After injection, these objects
perform the desired tasks independently and might even load fur-
ther resources. For example, an embedded ad might load additional
third-party code that is designed to counter ad fraud, to measure
the effectiveness of the ad, or to load additional fonts used by the
ad. As a result, embedding a single third party can lead to a long
tail of additionally embedded partners.

2.2 Online Tracking
Tracking users online is a widespread phenomenon on the Web [9].
It is used to re-identify users navigating the Web and a crucial part
of the modern online advertisement ecosystem as it allows them to

provide targeted ads. Techniques to track users can be divided into
stateless and stateful approaches. Stateless approaches use specific
attributes of the users’ device to identify it [1, 9, 13, 37, 53] (often
called “device fingerprinting”). In contrast, stateful approaches use
the machine’s state to identify users. Typically an ID is assigned
to each user and is stored in a cookie on the users’ device. The
upside of stateless approaches is that they cannot be prevented by
deleting third-party cookies. However, they are more error-prone
as device-specific attributes tend to change over time [16, 52].

3 RELATEDWORK
Previous work analyzed tracking mechanisms and the effects of
privacy legislation through measurement studies.

Privacy & Tracking Measurements. Englehardt et al. introduce
OpenWPM and use it to crawl the top 1 million websites and analyze
their tracking capabilities [9]. They find that many websites use
highly sophisticated fingerprinting methods (e. g., based on image
rendering) and that most companies participate in cookie syncing.
Degeling et al. analyze different cookie banner notifications and
effects of the GDPR on privacy policies [7]. They find that more
than half of websites provide a cookie consent notice, but only very
few offer users a real choice regarding cookie usage. The effects of
the GDPR have been studied extensively in the past. For example,
Utz et al. [51] analyzed implementations of cookie consent banners,
Urban et al. [48, 49] analyzed usability of the GDPR right to ac-
cess and the effect of the GDPR on cookie syncing activities [50].
Dabrowski et al. test if the GDPR has an impact on cookie settings
when users access the same websites from different countries [6].
They find that websites (around 50%) do not set cookies when a
user from the EU visits the website while they set a cookie when
the user visits from a non-EU country. Most recently, Sørensen
et al. analyzed the effect of the GDPR regarding third parties em-
bedded into websites [45]. The authors measure several prominent
websites and test whether the GDPR affects their third party usage.
They conclude that the overall usage of cookies declined but that
the GDPR was not necessarily the driver for that change.

Third Party Inclusion. Closely related to our approach is the work
of Kumar et al. [28] and Ikram et al. [21]. Both works use a concept
of the implicit trust of the embedded third and further parties.
Kumar et al. show that websites heavily rely on third parties, that
almost one-third of websites embed a third party that loads further
parties, and that these dependencies are a problem if one wants to
serve a website fully via HTTPs. Ikramet al. also show that many
websites (approx. 40 %) implicitly trust parties loaded by directly
embedded third parties and see an increase in embedded malicious
or at least suspicious site or script files in these chains.

Our work differs from previous work, as most tried to measure
effects on a horizontal scale (i. e., visiting a lot of distinct domains)
while we instead analyze websites on a vertical scale (i. e., , we
visit several subsites of the same domain). Furthermore, we focus
on privacy-invasive technologies and the determinism of third
party dependencies. By this vertical approach and dependency
identification, we can (1) analyze if subsites show different behavior
compared to landing pages, (2) study effects of embedding different
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third parties to websites, and (3) understand who is responsible for
embedding specific third parties.

4 MEASUREMENT APPROACH
In this work, we conduct a large-scale measurement study of the
dynamics of the Web on application level (i. e., the browser) to gain
insights into the usage of third parties and to illuminate reasons for
how they are embedded into websites. In this section, we describe
our approach and highlight how we estimate the relations between
specific third parties that are embedded into websites. Our study
consists of a multi-stage process in which we (1) build a corpus of
websites to visit, (2) use OpenWPM [9] to crawl these websites and
gather first-party links on these websites, and finally (3) visit the
crawled links and log all HTTP traffic, cookie usage, the embedded
iframes, and JavaScript calls of interest.

4.1 Terminology
Before describing our approach, we define two termswe use through-
out this work. By TLD+1 we mean the last part of the hostname
following the last dot in it. For example, the URL https://tools.ietf.org
has TLD=org, hostname=tools.ietf, and TLD+1=ietf. In most
cases, TLD+1 is a “second-level domain”. However, some domain
name registries use a second-level hierarchy. For example, New
Zealand uses various second level domains for different purposes:
.co.nz for organisations or .school.nz for schools. We identified
the TLDs using Python’s tldextract [40] package, which accurately
splits generic or country code top-level domains (ccTLD). Further-
more, we distinguish between landing pages and subsites. A website
is a subsite (SB) of a landing page (LP) if both share the same TLD+1
but have distinct URLs. Hence, first-party links on landing pages,
the page that is usually visited first, lead to subsites. We chose to
use the term SB rather than “webpage” to explicitly highlight the
hierarchical relation between SBs and LPs.

4.2 Website Corpus
In our analysis, we use the top 1M Tranco list et al. [30], which
is an aggregation of four other domain top lists. We used the list
generated on 03/26/2019 (ID: W9L9). First, we removed all websites
with the same TLD+1 and only kept the one with the higher rank.
We did so because we wanted to remove URLs of services that
offer users the (almost) same functionality. For example if the list
contains google.com (rank 1) and google.co.uk (rank 4) we would
drop google.co.uk because both domains share the same TLD+1. In
total, we removed 607 websites in this step. From the remaining
domains, we used the top 10,000 domains and grouped them by
the category of their content and also sort them into four different
buckets based on their ranking.

We used the McAfee SmartFilter Internet Database service to re-
trieve a list of content categories for the websites [33]. We cluster
the websites by categories because we want to check if the cate-
gory of a website has an impact on the usage of cookies and other
privacy-invasive technologies. Previous work has shown that, for
example, News websites utilize more third parties (e. g., ad services)
than other categories [45]. In total, 85 different categories are as-
signed to the websites of the dataset. An overview of the 15 most
prominent categories is given in Figure 1. In the remainder, we

Figure 1: Overviewof prevalentwebsite topics in our dataset.

limit the analyzed categories to the top eight categories and com-
bine all remaining categories in “Other”. Additionally, we group
the websites by the following buckets based on the website’s rank
in the used list: (1) 1 ≤ rank ≤ 100, (2) 100 < rank ≤ 1, 000, (3)
1, 000 < rank ≤ 10, 000, and (4) 10, 000 < rank ≤ 100, 000. Due
to the removal of duplicate domains, bucket (4) holds these 607
domains, 6.1 % of all visited domains. We use the buckets to test
whether the popularity of websites has an impact on the usage of
specific technologies.

If not stated otherwise, we use the one-way analysis of variance
(one-way ANOVA) statistical model to find differences between the
analyzed groups. In all tests, we use a 95 % confidence interval.

4.3 Measurement Framework
To measure the dynamic of websites, we utilize the OpenWPM plat-
form [9]. For each visit, we use the same user agent (Mozilla/5.0
(X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0)
and desktop resolution (1366x768), allow all third party cookies,
do not set the “Do Not Track” HTTP header or other privacy-
preserving techniques (e. g., anti-tracking extensions), and use stan-
dard bot mitigation techniques to disguise our crawler (i. e., random
scrolling and mouse jiggling). Furthermore, the browser adopts
other properties from the operating system (Ubuntu 18.04). Aside
from our bot mitigation techniques, we do not interact with the
visited websites in any way, limitations of this approach are dis-
cussed in Section 6. While a website might detect our crawler, it is
not detected by current mechanisms seen in the wild, as presented
by Jonker et al. [24].

OpenWPM is configured to store all third party cookies set or
accessed via JavaScript and HTTP headers. To capture these events,
we instrumented specific JavaScript functions that access the local
storage or HTTP cookies, by adjusting the .prototype of the respec-
tive functions and applying a wrapper to them that logs each call
and access to these functions. Furthermore, we inspect all HTTP
headers if a cookie is accessed (Cookie) or set (Set-Cookie). For
our measurement study, we disabled Flash because, on the one hand,
the technology will be deprecated by 2020 [2] and on the other hand,
we did not find a considerable usage (< 0.01%) of Flash cookies in
a pre-study we conducted (see Section 4.3.1). We passively log all
DNS responses to test if IP addresses are used, which are associated
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with countries that do not automatically offer a GDPR adequate
privacy protection level. We define all countries that are part of
the Privacy Shield [47] and countries part of the European Eco-
nomic Area (EEA) [19] to be adequate. We use MaxMind’s GeoIP
database [31] to create this association.

4.3.1 Pre-Study. As the Web is highly dynamic, any attempt to
measure it is quite challenging. To get a comprehensive view of
cookie and third party usage, we conducted a pre-study to get an
approximation of which measuring parameters to use (e. g., amount
of subsites to visit) while limiting the crawling time and generated
traffic to a reasonable amount. In the following, we limit our pre-
study to TP cookies as prior work extensively analyzed those [6,
7, 10, 15, 17, 27, 42], and we want to test whether they might have
missed cookies due to their measurement setup. However, in our
primary analysis, we also analyze various tracking mechanisms
(see Section 5.2). To find the optimal amount of subsites to visit, we
randomly selected 100websites (TLD+1) from the top 1,000 websites
and visited 25, 50, 75, 100, 250, 500, and 1,000 subsites of these
websites. The websites were visited in a separate measurement but
using the same TLDs+1. We conducted these measurements using
a browser with a profile that already has some cookies present in
the local cookie store and once with a vanilla browser to see if
active cookies influence cookie usage. We filled the local cookie
store by randomly visiting 100 websites from the top 1,000 websites
and used the resulting cookie store. In a separate measurement, we
visited the landing page of the selected websites 1,000 times and
recorded the used cookies to test if there is a difference if users visit
the landing pages or subsites.

We compared the number of TP cookies set in each measurement
of the pre-study and found that subsites of websites typically set
significantly more cookies than the respective landing page does.
In our measurement, the mean amount of cookies used increased
by approx. 20 (41 %), when visiting subsites rather than only the
landing page. This shows that if one wants to perform cookie/third
party measurements, one should always include subsites to the
measurement setup rather than only measuring landing pages. Fur-
thermore, we measured a mean increase of 12 cookies (27 %) per
website visit if a browser is used that already has cookies in the local
cookie storage. When it comes to the change of cookie usage based
on the number of visited subsites, we found that the mean amount
of accessed/set cookies stabilizes around 50 (SD: 100; median at 12)
after visiting 100 subsites (see Figure 2). In conclusion, to magnify
the number of cookies set, we use a browser profile that has cookies
set and visit 100 subsites and the landing page of each website.

4.3.2 Measurement Sequence. We used the same method to create
the browser profile for our experiment crawls that we utilized in
the pre-study. This profile is loaded before each website visit but is
not altered. Hence, each website visit uses the same profile and the
order of visited websites does not impact the results. In total, we
conduct the measurements from three different locations (Europe
(DE), North America (US), and Asia (JP)) to account for possible
geographical differences [6]. For all measurements, we used two
computers located at a European university. For each of our regional
measurement runs, we created a new distinct browser profile. We
used a commercial VPN service (NordVPN ) to obtain an IP address
from the locations outside the EU. Using a VPN service comes

Figure 2: Mean number of cookies set in our pre-study with
the corresponding standard derivation

with the risk that it might inject content into the communication
stream [25]. However, we did not find any hints of this practice for
the used service, neither in the Terms of Service nor publicly on
the Internet.

We configured OpenWPM to visit the landing page of each web-
site and to gather all first-party hyperlinks on that site (subsites)
one day before the first measurement. Therefore, some of these
links might not be present on the front page anymore at the time
we perform the measurements from different regions or might not
exit anymore after all. We did so to increase comparability between
our measurements since we visited the same landing pages and sub-
sites in each measurement. Additionally, we collect all first-party
hyperlinks on the subsites but only use them (in random order)
if there are not enough subsites linked on the landing page. Af-
terward, we choose 100 random subsites that we used during the
experiment crawls. In each measurement, we visited 549,715 (SD
16,851) distinct URLs on average.

4.4 Cookies
A cookie is a key-value pair set on a client by a visited website or
third-party present on that website. In this work, we count every
single key-value pair as one cookie, and not all textual data stored
on the client, because each pair can be used for different purposes.
We heuristically group cookies in different categories based on
their lifetime. As for HTTP cookies, we compute the lifetime of a
cookie-based on the expires attribute and the timestamp when the
request/response was sent/received, or JavaScript command was
executed. If we cannot determine the lifetime of a cookie or if it
is negative, we consider a cookie as a “Session” cookie, which is
deleted by the browser when the HTTP session ends. In total, we
use four lifetime categories: (1) “Session”, (2) “Short” (≤ 1 week),
(3) “Persistent” (≤ 1 year), and (4) “Permanent” (> 1 year). We used
the evolution of maximum cookie lifetimes in the Safari browser,
enforced through the Intelligent Tracking Prevention [3], as an ori-
entation to determine them.

4.4.1 Cookie classification. Cookies can be used for various means.
We want to asses the specific purposes why third parties set cook-
ies and which purposes are most dominant to get a better under-
standing of real-world cookie usage. We use the following cookie
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type classes defined by the International Chamber of Commerce
UK [22]: (1) “Strictly Necessary Cookies” are needed to provide ba-
sic functionality of a website, (2) “Performance Cookies” aggregate
(anonymously) user’s usage of the website, (3) “Functionality Cook-
ies” personalize the website’s usage, and (4) “Targeting/Advertising
Cookies” are used to track users or to display them personalized
ads. For our analysis, we used Cookiepedia, a platform that provides
public classifications of cookie classes [38]. This process might be
error-prone as cookie classes are assigned by hand but are—from
our point of view—the best approximation of online cookie usage
today. In total, we can classify 45.3 % of all observed cookies.

4.5 Third Party Trees
In this work, we evaluate the number of partners loaded by an
embedded third-party object. To do so, we model third party trees
(TPTs) for each visited URL (for each landing page and all subpages,
respectively), which include all third parties loaded on the visited
page. A similar concept was used by Ikram et al. [21] and Kumar
et al. [28] to analyze resource loading dependencies (termed “inclu-
sion chains”). We extend this concept as we visit several sites of a
single domain, which enables us to construct a more comprehensive
and realistic view of a website’s dependencies, and we do not limit
ourselves to JavaScript inclusions. We use the term tree rather than
chain as our concept describes a more complete view of a website’s
TP relations and not a single instance of TP inclusion.

We build the trees based on the analysis of JavaScript, iframes,
and Cascading Style Sheets (CSS) that can be used to load third-
party code dynamically. Other HTML objects (e. g., images) can
also be requested from third parties, but these objects cannot load
additional code dynamically and would not spawn any children in
the tree. In our analysis, we omit these objects if they are located
right below the root (depth = 0) but consider them if they occur
as leaves in longer branches. We omit them because they would
make the results harder to interpret as one cannot decide if these
parties do not load further third parties or simply cannot do so.
However, we consider these objects in our general analysis (see
Section 5.1). A third party tree is designed to show which party
is responsible for loading another party. To account for HTTP
redirects, we substitute the respective TLD+1 with the redirects
TLD+1 in the trees and delete all edges that create a redirection
loop. Therefore, we add each loaded script and inserted iframe as a
child of the respective ancestor (script/frame) in the tree, if needed.
For example, if a script, which is loaded from foo.com, loads another
script from bar.com we add bar.com as a child of foo.com in the
tree. Thus, we can measure the number of third parties loaded due
to each embedded object. Regarding iframes, we use openWPM’s
feature to save the nested iframe structure of a website. Based on
this structure, we insert each frame (i. e., the source TLD+1) at
the corresponding position in the tree. For JavaScript code, we
inspect the call stack of each script, test if code from another party
is executed (e. g., a function in an external library), and include
this party at the respective position in the TPT (based on the call
stack entries). To find CSS dependencies introduced through the
@import command, we analyze the content type of HTTP requests
and test if the origin and target of the request URL both load CSS.
Eventually, each TPT consists of all scripts, style sheets, and iframes

Node(adidas.com) (Visited Website)
|- Node(MediaMath [C]) depth=0; breadth=4
| |- Node(Improve Digital) depth=1; breadth=0
| |- Node(PubMatic [C])
| |- Node(OpenX [C])
| |- Node(Index Exchange)
|- Node(TrustArc)
|- Node(Adobe)
| |- Node(Tealium [C])
| |- Node(Akamai [C]) depth=2
| |- Node(Instana) depth=3
| |- Node(Adobe) depth=4

Figure 3: Example of an observed third party tree. The listed
companies represent the companies operating the observed
URLs. [C] illustrates the cookie setting parties.

loaded by a website. Each branch of a tree represents the sequence
in which different third parties (domains) were embedded.

If not stated otherwise, we use the TLD+1 of a third party domain
as the node identifier; otherwise, we use the companies associated
with the TLD+1. We use the WhoTracks.me database [5] to link
domains to the respective companies owning them. Thus, a branch
in the tree could consist of multiple domains operated by the same
company (e. g., foo.com→ googletagmanager.com→ googleapis.com
→ youtube.com). However, we collapsed requests stemming from
one company into one leaf. In the previous example, we would not
add googleapis.com even if youtube.com would load a script form
that domain. We did so because otherwise, the resulting trees would
result in a much deeper length if several resources were loaded
from the same TLD+1. For example, if foo.com was embedded and
would than loadmetric.foo.com, subsequently ad.foo.com and finally
foo.com/?ad_loaded=1 the resulting branch would be much deeper.
Overall, the maximum depth using this more lax approach would
increase by magnitudes from eight to 52. Thus, a branch consists
of all TLD+1/companies that could perform a task on the client.

An example of a third party tree is given in Figure 3, including
the companies’ names, not TLD+1s. The tree shows the visited
website (adidias.com), the directly embedded third parties (Media-
Math, TrustArc, and Adobe—depth = 0), the partner of the third
partners (fourth parties at depth = 1—e. g., Improve Digital), and
further embedded services e. g., Akamai (depth = 2) or Instana
(depth = 3). The services that actively set cookies are marked with
a [C]. The example illustrates that by embedding a single service,
many other direct partners of that third parties might be embedded
into a website (e. g., MediaMath embeds four partners). Further-
more, embedding a single third party might implicitly lead to a
long branch of direct and indirect partners of the used third party
(e. g., Adobe that creates a branch of depth = 4). Note that at depth
four, a service from Adobe is embedded. This is not a loop, but
simply, the previously loaded party utilizes a different service of
Adobe.

5 RESULTS
We conducted our measurements in the second quarter of 2019
and found around 93% of the landing pages in our dataset to be
accessible. The remaining websites provided services that seem not



WWW ’20, April 20–24, 2020, Taipei, Taiwan Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann

Table 1: General overview of our three measurement crawls.
The number of visited websites and subsites with the cor-
responding number of observed TPs, cookie setting TPs (C
TPs), and used cookies is shown.

Region Websites Subsites TPs C TPs Cookies

Europe (EU) 9,267 561,087 12,076 5,393 20.6M
Asia (AS) 9,266 530,356 12,926 5,815 18.2M
N. America (US) 9,333 557,702 13,687 6,115 20.4M

to be intended for rendering in a web browser (e. g., APIs) or did
not exist anymore. In total, we visited over 1.5 million websites that
embedded over 37,000 third parties producing over 4.5 TB of data.
More than 17,000 third parties access/set over 59 million cookies
across all website visits in our experiment. An overview of our
measurements is given in Table 1.

5.1 General Overview
First, we tested how many cookies are set/accessed when visiting
subsites in contrast to the respective landing pages to test the po-
tential bias in previous studies that focused on the landing page
only. In our measurements, as shown in Figure 4, subsites set con-
siderably more (36 %) cookies than the respective landing pages.
On average, 55 cookies were set when loading a landing page while
78 were set when a subsite was accessed. The difference between
the number of cookies used by third parties is statistically signifi-
cant when comparing (1) different categories (ANOVA test p-value
< 0.001) and (2) when comparing landing pages to subsites (p-value
< 0.001) However, we did not find a statistically significant effect
of the originating region of the visit and the rank of the website on
the cookie setting behavior. Our results show that landing pages of
websites show a different cookie usage behavior than the respective
subsites as those make more usage of third parties. To get a better
understanding of the implications of increased cookie usage, we
analyze the primary purposes of why cookies are set.

5.1.1 Lifetime and Cookie Types. Aside from the number of cook-
ies set, it is interesting to analyze why they are set and how long
they stay active in the browser. Overall, we could classify 45.3 %
of all observed cookies in terms of distinct used keys. Regarding
absolute numbers, we could classify 74% of all observed cookies.
Most of the observed cookies are used to track website visitors
or to provide targeted ads (99 %). The “type” of the cookie shows
a strong correlation with the amount of cookie set for this type
(p-value < 0.0001). This means that specific types of cookies are set
more often than others. Furthermore, the purpose of a cookie is not
related to its lifetime, aX 2 test does not show a correlation between
“type” and “lifetime”. Furthermore, third parties use similar types
and lifetimes for their cookies, no matter on which website they are
embedded in. We did not find a correlation between the “type” or
“lifetime” of a cookie and the website’s category. Our results show
that cookies are overwhelmingly used to track users or to provide
them with targeted ads. Furthermore, cookies in all categories use
various lifetimes. Given the primary purpose of cookies (“Target-
ing/Advertising”) and the measured increased usage of cookies on
subsites, we see that subsites show different behavior in that regard

Figure 4: Mean number of cookies used by each visited land-
ing page and each respective subsites, by category of the vis-
ited website. To increase the readability, we capped the bars
at 500. 1.8 % of sites had a higher number of cookies; this
doesn’t impact the computed values.

(see also Section 5.2). Tracking users on subsites provides a more
comprehensive view of their online activities. For example, visiting
the landing page of an online shop does not necessarily indicate
which products a user is interested in, but this information can be
extracted on subsites.

5.1.2 Legal Compliance. With the introduction of the General Data
Protection Regulation (GDPR) [46] and the California Consumer
Privacy Act (CCPA) [4], service providers have to be more aware of
business partners they work with. If a business partner tracks users
or uses personal information in other ways and is not located in a
GDPR adequate member state [19] or not a member of the Privacy
Shield [47], they need to agree on a data processing contract (Article
28 §3 GDPR) that “appropriate safeguards” (Article 46 §1 GDPR)
are taken which enforce privacy rights of EU citizens. Based on the
IP addresses observed in our measurements (see Section 4.3), we
analyzed if connections were established to IP addresses that are
associated with countries that are not a member of the EEA or part
of the Privacy Shield. In the remainder of the paper, we call these
parties “non-adequate” or “possibly problematic” to improve the
reading flow of this work. Note that every business can agree by
contract that the data of EU citizens are processed according to EU
legislation and, therefore, these parties might pose no problem at all
(Article 28 §3 GDPR). However, the current legal debate only focuses
on TPs as “joint controllers” [11, 20] and does not cover fourth or
further parties. We want to highlight that a binary classification of
what is compliant with legal regulation andwhat is not is impossible
to make without looking at the specific service agreements between
websites and third parties.

Figure 5 shows the origins and targets of all requests for which
service providers need to make sure that they have taken appropri-
ate safeguards. These numbers only refer to our EU measurement,
and the results are not violations of the legislation, but provide
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Figure 5: Origins (left) and targets (right) of requests to ser-
vices whose IP address is notmapped to an IP in an adequate
country.

insights to potential data flows that might conflict with the legal
requirements. The origins/targets are based on the observed IP
addresses in our measurements. Overall, 4.7 % of all cookies were
set by services outside adequate geolocations and only 7.1 % of the
visited domains (TLD+1) exclusively used TPs that are located at
adequate geolocations. Domains using only adequate locations are
located in the US (59 %), followed by Germany (7 %), and the United
Kingdom (3 %). In our dataset, Singapore is the most prevalent tar-
get of non-adequate requests (26 %), followed by China (5 %) and
Australia (5 %). The US is the most common origin of such requests
(63 %), followed by China (6 %) and Germany (5 %). We did not find
a statistically significant impact of the region on the question of
whether or not a third party from non-adequate geolocation is used.
When looking at the services located in possibly non-adequate ge-
olocations, we found that almost half only used sometimes (53 %),
and the other half always used possibly non-adequate geolocations
(47 %). Overall, roughly 10 % of all observed TPs used IP addresses
in possibly problematic geolocations.

In the following, we analyze the services that use sometimes
adequate and sometimes non-adequate geolocations. This is an
interesting subset as service providers might not be aware of the
possibility that these TPs change their geolocations over time. In
contrast, third parties that always send data to possibly problematic
geolocations are more easy to identify and, therefore, the transfer
of data to these non-adequate countries are likely part of the data
processing contracts. Requests to TPs that only sometimes used
adequate geolocations were most of the time resolved to an EU IP
address but sometimes (< 1%) to addresses outside the EU. For ex-
ample, sometimes a similar resource of a third party was requested
from different locations in the same measurement. Meaning, the
URL csm.ad-network.foo was resolved to sgp.csm.ad-network.foo
in Singapore and nl.csm.ad-network.foo in the Netherlands. This
is challenging as service providers cannot ensure that only EU
endpoints of the used third party are used. In our measurement,
gstatic.com (a service operated by Google) with 20% of all inclu-
sions of possibly non-adequate services and upravel.com (a Russian
advertising service) with 15 % are the top services that might pose

a problem to service providers. The next service only accounts for
1 % of these possibly conflicting services (i. e., there is a long tail
distribution). One likely explanation is that these are effects of load
balancing or similar techniques and that the servers belonging to
these IP addresses are controlled by the same third party. However,
service providers need to account for this behavior in the data pro-
cessing contracts with the TP, and the TP must assure that GDPR
adequate data processing rules are in place no matter where their
servers are located.

Summary. Our results show that measuring only landing pages
of websites might only reveal a fraction of the websites’ real use of
third parties. Furthermore, we found that websites make extensive
use of cookies, primarily to serve ads or to track users, and we
observed that some embedded TPsmight be conflicting with current
legislation. To further investigate the effects of visiting subsites and
not only landing pages, it is interesting to look at further areas that
might be implicated by our findings.

5.2 Replication and Comparison
To provide a more comprehensive overview of our measurements
in comparison with previous work, we tried to replicate the main
findings of previous work using our data set. We differentiate be-
tween studies we could replicate using our data ( —see column
“Rep.” in Table 2) and studies we would partly replicate (H#). Further-
more, we indicate (“Res.”) if we could produce similar results (✓).
To reproduce the results, we analyzed the landing pages of each
website (if the paper did so) or used the same amount of subsites.
If we could replicate the results, we measure them on all visited
subsites to test if these studies measured a comprehensive gener-
alizable view or as shown in our study, subsites show a different
behavior (“Scales”). We differentiate if visiting subsites makes a
measurable difference in contrast to only visiting landing pages
(✗). The results are given in Table 2. Our replication studies do not
aim to replicate all results of previous work, but we only focus on
the main takeaways and results closely related to our work. We do
not claim that our replications are sound or complete, but we tried
to faithfully replicate previous work as good as possible using our
data set.

In contrast to Dabrowski et al. [6], and as previously stated, we
could not find statistical evidence that the originating region of a
request influences cookie setting practices in general. On the one
hand, this could be a result of different experimental setups as we
tried to maximize the “cookie setting behavior” of each website to
achieve more generalizable results. Dabrowski et al. used a headless
browser that can be easily detected by websites and, therefore,
might affect the loaded TPs (e. g., ads might not be loaded to counter
ad fraud). On the other hand, we performed our experiment on a
larger scale and interacted (e. g., scrolling) with the websites, which
could fundamentally affect the results.

Furthermore, we found that subsites set significantly more cook-
ies than the respective landing pages. As for the results of Sørensen
et al. [45], we could verify that the GDPR has no immediate effect
on third party usage. Sanchez-Rola et al. [42] show that opting-out
of cookies often has no measurable effect on cookie setting prac-
tices in the field. We could only partly reproduce this work as we
never interacted with any cookie banners, but our results show
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Table 2: Overview of previous work we tried to replicate (Rep.), the scale of the work (“LP” := landing page, “SB” := subsite),
the results (Res.) of our replication, and if these experiments show different behavior in a vertical setup (Scales).

1stAuthor Ref. Year Venue Scale Main finding Rep. Res. Scales

Dabrowski [6] 2019 PAM LP Websites set 49 % less cookies if user located in the EU
visit them.  ✗ ✓

Sørensen [45] 2019 WWW LP + �9 SB Effects of the GDPR to third-party usage is not definite.  ✓ ✗

Sanchez-Rola [42] 2019 AsiaCCS LP Tracking is often still present even if opted-out. H# ✓ ✗

Urban [50] 2020 AsiaCCS LP + 3–5 SB Cookie syncing reduced by around 40%. H# ✓ ✓

Merzdovnik [34] 2017 EuroS&P LP + 2 SB State of the art tracking blocking tools can limit user
tracking but still have blind spots. H# ✓ ✓

Englehardt [9] 2016 CCS LP Websites use various fingerprintig methods. # — ✓

Kumar [28] 2017 WWW LP Implicitly included TPs pose a challenge when
upgrading to HTTPs.  ✓ ✗

Ikram [21] 2019 WWW LP Implicitly included parties might pose a security threat.  ✓ ✓

Iordanou [23] 2018 IMC user browsing
behaviour

In the EU, tracking data is transferred across countries
but rarely leaves the EU.  ✓ ✓

that cookies are still widely used and that there are no regional
differences, while in the EU users should opt-in before cookies are
being used. We used data of our prior work collected before the
GDPR became effective [50]. Using this data and comparing the
regional data in our experiments, we could verify that cookie sync-
ing seems to be influenced by different legislation. Scaled to our
collected data, we found an increase of cookie syncing activities
on subsites in contrast to landing pages. This replication cannot
be seen as representative as our measurement misses essential fea-
tures, especially to identify IDs, to assess cookie syncing since we
only used one profile in each region.

To test whether our results of increased cookie usage on sub-
sites also applies to user tracking, we use the numbers presented
by Merzdovnik et al. [34] on the presence of trackers on websites
as a baseline. To test if a tracker is active on a website, we use
the EasyPrivacy List [8], which is a list combining URLs of known
trackers. However, we do not test whether anti-tracking tools are
useful or not. In our measurement, we found that trackers mostly
occur on subsites in comparison to their respective landing pages
(an increase of approx. 6 %). 2.5 % of the measured websites do not
embed any trackers on the landing page but use trackers on subsites.
Overall, we could show that tracking on subsites increases and that
future work concerning this area should include subsites into their
measurement. In terms of overall tracking occurrence, we produced
results comparable to the “plain” profile used byMerzdovnik et al. Fi-
nally, we tested the prevalence of device fingerprinting scripts in
our data set, as previously studied by Englehardt et al. [9]. As the
scripts identified by Englehardt et al. are probably outdated, we
only found four of them in our total dataset, we used the popular
“Fingerprint2” library [12] to test for the presence of such trackers.
Hence, our results can be seen as a lower bound as we only test for
the presence of one script. We identified a mean increase of device
fingerprinting of 25 % on subsites in contrast to the respective land-
ing pages. In all three measurements, we found 13 domains (0.14 %),
which did not use the script on the front page but on subsites. Over-
all, we found the tracking script on 0.15 % of the landing pages

while Englehardt et al. identified device fingerprinting on 1.8 %, and
the most common script on 0.45 % of the analyzed websites.

Summary. In this section, we demonstrated that only measuring
landing pages hides the scale of different phenomena observable
on the Web. Furthermore, the behavior of TPs differs on different
subsites, which raises the question to what extent service providers
are in control of TPs embedded into their services. To tackle this
challenge, one needs to understand relations between TPs and the
determinism of which third parties will be loaded into a service.

5.3 Third Party Trees
As described above, we are interested in understanding dependen-
cies between third parties and possibly resulting in challenges for
service providers and users. Therefore, we created third party trees
(see Section 4.5) to better understand the implications of embed-
ding a single third party into a website. Figure 6 shows the depth of
the measured third party trees by category of the visited websites.
Remember that each visited website (i. e., distinct URL) produced
its own TPT, and the directly embedded third parties are of depth
zero. The average third party branch has a depth of one (median
also one), and the deepest branch of a tree we found has a depth of
eight. In total, 43.0 % of the observed branches have a depth of one
or more, which means that these trees include parties that are not
necessarily known to the service provider. Therefore, several third
parties (in terms of TLDs+1, not distinct companies) load at least
one additional partner. Each node in the trees has, on average, 0.9
(SD 37) direct children (breadth) with a maximum of 361, and each
branch compromises on average 0.9 (SD 6.4) different companies
(max 127). In total, 2,901 TPs (10 %) are embedded that never in-
cluded any child. The depth of a tree is impacted by the category of
a website (p-value < 0.0001). Similar to the results of previous work,
“News” websites tend to use more cookies and third parties [45].
As over 40% of all TPs at least load one additional partner, it is
interesting to look if these use cookies, for example, to track users
or to serve them targeted ads.
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Figure 6: Relative distribution of the measured third party
tree depth split by the websites’ categories.

5.3.1 Cookies Set in Trees. Not every party in each TPT, more
specifically in each branch, will necessarily set a cookie. Therefore,
we analyzed the depth of the cookie setting parties and the overall
amount of cookies set in each branch. We limit ourselves to cookies
but expect, based on our results presented in Section 5.2, that other
privacy-invasive techniques would likely produce similar results.
Starting with the depth of set cookies, on average, 1.5 parties in
each branch do not set a cookie. In 48 % of all branches no party and
only in 125 branches (approx. 0.002%) all parties set a cookie. The
website’s category and its rank both show statistical significance in
d the number of cookies set in each branch (both p-values < 0.001).
Furthermore, we found that deeper branches do not necessarily, in
relative numbers, lead to more cookies being set. As for the depth
on which cookies are being set, we found that most cookies (72 %)
are set by the fourth party (depth = 1). The main reason why most
cookies are set on depth one is likely because most trees are of
depth one. Hence, deeper trees occur less often and, consequently,
in absolute numbers, set fewer cookies.

Overall, slightly more than 18% of cookies are set on a depth
larger one (fifth party or higher). If service providers want to choose
services that do not use cookies, for example, because they want to
protect their customers from tracking, they face the problem that
often the fourth party sets a cookie. Therefore, service providers
have to carefully monitor the behavior of all embedded third parties
for such behavior. Since one-fifth of cookies are set in depth one,
it is worth investigating how much control or knowledge service
providers have about these parties. TPs that always include the
same third parties can be seen as more predictable because the third
parties do not change, and service providers know which third par-
ties will be included in their websites. Furthermore, TPs that do
not create deep branches are better to assess for service providers
since hierarchies and dependencies are easier to understand. There-
fore, we analyze the deterministic of branches generated by directly
embedded TPs.

5.3.2 Determinism of Third Party Trees. The determinism of each
branch that is generated by an embedded TP is import if service
providers want to understand which TPs are loaded and who is
responsible for loading them. If it is known, before loading the
third party object, which other third parties might be embedded,

Figure 7: Children included in only some of the branches
(fluctuation) created by a specific TP within each visited site
(grey) and across all sites (black).

service providers can evaluate the potential risks of a TP for their
users. Therefore, we tested the fluctuation of embedded companies
for each TP in the measured trees. First, we tested the fluctuation
within each visited website (TLD+1) and its subsites. Meaning that
we test which third parties are embedded into the visited website
by each observed third party on a specific subsite in a specific
region. Secondly, we tested the fluctuation across all websites and
all regions, meaning that we test if a wider spread view of a third
party provides more insight of the further loaded parties or if they
show different behavior on different websites.

Half of the branches (50.4 %) have at least one fluctuating partner
in them. Figure 7 shows the measured fluctuation of a TP within
(gray) and across (black) the visited sites. The x-axis shows the
relative amount of fluctuating companies in all branches of an
embedded third party. Zero means branches of this TP always
include the same third parties, and six means that six distinct TPs
only accrued in some of the branches. These numbers exclude third
parties that never had any children because these would naturally
be zero and might lead to a false conclusion about the deterministic
of TPs. The results show that almost a third (62 %) of third parties
that embed other third parties use fluctuating partners (e. g., due to
real-time ad bidding) when loaded on different subsites. Across all
regions, we see that there is a long tail distribution of companies
that only occur in some of the branches, note the increase in more
than six new children. Regarding the impact of the originating
region, in which the measurement was performed, we found no
statistical significance on its impact on the fluctuation. However,
the weighted mean (local) fluctuation was the highest in the US
(5.78) and lowest in the EU (5.49).

On a global scale, we find a different picture. We see that the
global fluctuation in the EU is more distributed than it is in other
regions. We found no statistical evidence that the region affects
the local or global fluctuation of children. In conclusion, we see
that measuring TPs on a global scale does not necessarily provide
a generalizable view as some TPs behave differently on different
sites (e. g., due to the advertised products or partners in different
regions). Our results show that the list of third parties embedded
in a website is not deterministic, which makes it challenging for
service providers to account for all TPs that might be present on
their websites. Embedding some third parties leads to an often
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.

Figure 8: Resulting branch depth of objects embedded by dif-
ferent companies (scaled for each individual company).

changing set of embedded third parties (e. g., different TPs provid-
ing ads). However, service providers only have little control over
these processes as they often depend on third parties to provide
their service. As the (non-)deterministic of these trees is related
to the embedded TP, it is interesting to analyze the depth of trees
generated by different TPs (companies).

5.3.3 Companies. Figure 8 shows the average, scaled branch depth
that is created by embedding a single object of different companies.
All values are scaled for each company, not overall, and include
all TLDs+1 operated by the company. Thus, Figure 8 presents the
resulting depth of each company and does account for the overall
occurrence of each company. Furthermore, the figure only lists the
top 15 companies, regarding absolute amounts of embeddings of
these companies. All remaining companies are combined in the cat-
egory “Other”. The top companies account for over 98 % of absolute
third party embeddings. In general, embedding most TPs results in
short trees of depth zero. However, ad-tech companies—the primary
source to finance many websites—offer a more widespread resulting
TPT depth (e. g., PubMatic or Rubicon Project) which reduces the op-
tions to choose partners that do not load many other partners. We
found statistical significance that the embedded company impacts
the depth of the generated tree (p-value ≈ 0.008). Regarding the
position of companies in the trees, we found that larger companies
(e. g., Google or Facebook) occur mostly at depth zero (absolute num-
bers) while service providers of TPs (e. g., companies that counter
ad fraud) occur deeper in the trees.

Summary. Our results indicate that it is quite challenging for
service providers to keep track of all third parties that might be em-
bedded into their services. Furthermore, before loading the directly
embedded TP, it is often not definite which other parties might be
loaded—especially ad networks load various fluctuating partners.

6 LIMITATIONS
In the following we discuss limitations of our work. We use the
classification of Cookiepedia, which might be wrong to some ex-
tent and is incomplete. We could only classify slightly over 45%
of all observed cookies but show that an overwhelming majority
(99 %) tracks users or serves targeted advertisements. We mapped
requests from different services to a single company, if possible.

If we observed multiple requests to domains owned by one com-
pany (e. g., ads.foo.com and fonts.foo.com), we collapsed them to
a single request if they occurred in sequence. Our measurement plat-
form, a customized OpenWPM instance, does not interact with any
cookie banners that are present on the visited websites. Hence, we
do not capture cookies set by third parties that honor opt-in choices
of (European) users. However, previous works demonstrated that
cookie consent notices often do not offer choices to opt-in [51],
do not work at all [42], and that the used libraries often are not
complaint to current legislation [7]. Therefore, our results are a
lower bound since (1) we shortened the TPTs and (2) some cookies
might only be used after affirmative action of the user.

7 DISCUSSION
We have shown the challenges service providers face when they
rely on third-party code and try to account which third parties are
loaded when users use their service. It is the high dynamic and
previously nominal regulation of the Web that now presents chal-
lenges to service providers. As service providers might carefully
select the directly embedded third parties (e. g., ad networks), they
cannot control which third parties might get included when these
third parties loaded their content (e. g., due to ad real-time bidding).
The primary tool website providers have to solve these challenges
are data processing contracts that include indirectly embedded
third parties. From a research perspective, we have shown that a
simple horizontal scaling of websites to visit (i. e., websites from a
given toplist) is not sufficient to measure a phenomenon of inter-
est. Meaning that future work should (1) scale their experiments
vertically and (2) previous results of different Web measurement
areas should be re-visited to measure the given challenges ade-
quately. Finally, our assessment of purposes if cookies underlines
the dire need of privacy protection mechanisms to limit cookie-
based tracking—which is currently promoted by several browser
vendors (e. g., Firefox [35], Chrome [18] and Safari [3]).

8 CONCLUSION
In this work, we have analyzed the cookie setting practices of the top
10k websites on theWeb. We found that 99 % of all cookies we could
classify were set with the intention to track users or to serve them
targeted ads. Furthermore, we modeled third party trees, which
assemble all third parties embedded into a website and loading
dependencies among them. By analyzing the third party trees, we
found that the median depth of such trees is one (max eight), that
there is a sever fluctuation of children in different branches with the
same parent node (third party), that especially ad networks result
in longer tree branches, and that only 7% of all visited websites
(TLD+1) never embedded a third party that might pose possible
legal problems. Moreover, we have shown that studies that only
measure landing pages of websites miss a substantial amount of
embedded third parties and cookies set.
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