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. INTRODUCTION

Online banking and online transactions are a huge part of the modern inforrnation society and will
even grow in importance. Between 2007 and 2015 the usage of online banking grew from 25% 1o
46% in Europe. Online banking applications are nowadays successfully attacked by adversaries.
The total damage caused by these attacks summed up to almost 30 million Euro in Germany in 2014,
Successful attacks on online banking applications are mostly enabled by users who carelessly
disclose private information. Hence, the awareness of users has o be raised so that they know about
the current attack vectors and how they should act if they are attacked. In this work we present an
alert system that warns users at times when the threat level for online financial fraud is particularly
high. At these times alerts are issued that explain the current threat level fo users and how they can
profect themselves against current affack vectors. These in-fime alerts raise user awareness as
needed rather than informing them once in general.
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Il. IDENTIFIED PARAMETERS

If one wants fo assess the current threat level it is important to identify the key indicators that
influence it. We identified three main categories of indicators for online financial fraud (phishing
welbsites, messages, and emails; banking Trojan infections; publicly known vulnerabilities - see Fig. 1).
We used different dafa sources for each category which are mostly publicly accessible. To check
the accuracy of our developed approaches we use real online banking frauds.
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A. Unsupervised learning

For the unsupervised learning approach we
aggregated all different parameter groups to a
single value for each day in our ftest inferval (see the
solid, blue line in Fig. 2). We used the k-Nearest
Neighbor (k-NN) algorithm on this time series fo
detect outliers by computing the Euclidian distance
to its k leff neighbors. A value is considered an outlier
if the distance is greater than a computed threshold.

B. Supervised learning

V. PRELIMINARY RESULTS & FUTURE WORK

Aside of the unsupervised learning approach we used different off-the-shelf
supervised learning algorithms. The amount of frauds that occurred during the
time span of days (n ) after a given day ( { ) is used as dependent variable.
We used the following three approaches: (1) A general linear model; (2)
Support vector regression (SVR), with a polynomial kernel of degree 3. The
hyper parameters of the SVR were optimized using grid search; (3) A (3, 3, 1)
feed forward artificial neuronal network (ANN). The network is build performing
resilient backpropagation without weight backiracking. Results of the
implemented approaches are displayed in Fig. 2.
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C. Baselines

We compared our mechanisms with two different baselines: (1)
We generate 8 alerts af random times and measured the
effectiveness of those dalerts. We computed the mean
effectiveness, over 100 iterations, of these alerts and used the
computed value as first baseline; (2) We divided the given
fimeline into 16 chunks of equal size, issued an alert for each
chunk, computed the effectiveness of those alerts, and used it as
second baseline. We used 8 alerts because the unsupervised
and supervised approaches issued around 8 alerts.

In this work we presented how off-the-shelf machine learning algorithms can be used to computfe the current threat level in the online banking business. The effectiveness of our fested approaches are
displayed in Fig. 3. For the longest alerting interval (10 days after an alert) each tested approach outperforms our baselines. Our preliminary results suggest that alert systems that use the proposed approaches
can be a useful tool o assist and warn users of the current threat situation. We designed different alerts (an example is given in Fig. 4) for different cormmunication channels (e.g. email, pop-ups etc.) and are

currently conducting a user study to test how subjects react to different alerting channels and alert designs.
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