
Abstract — In modern information society online transactions

are an important part of our daily lives. In this work we propose a

protocol that allows users to perform secure online transaction

even if the used system is not trustworthy or infected with mal-

ware. We developed a user-centered protocol that uses a

CAPTCHA like approach to prevent attackers from manipulating

a transaction without the user or the corresponding server notic-

ing. Therefore, we add context sensitive information about the

transaction to a task that is set to the user. This task is designed to

be hard to solve for computer programs but easy for humans. To

evaluate our approach we conducted a user study and computed

the probability by which an attacker can successfully attack the

system. We show that a vast majority (>94%) of all transaction

can be secured while the system itself remains useable.

I. INTRODUCTION

Online banking and online transactions are a huge part of the

modern information society and will even grow in importance.

Let alone between 2007 and 2015 the usage of online banking

grew from 25% to 46% in Europe [1]. Due to the rapid growth

of applications that include micro transactions and the general

digitalization of our society the amount of executed online

transaction will rise further in the future [2]. Fraudsters already

compromised this sector in various ways. An official report

published in 2014 by the German Federal Criminal Police Of-

fice shows that the damage done by fraudsters in the online

banking business rounds up to almost 30 million Euro [3] (in

Germany). The actual damage is expected to be way higher due

to the large number of unknown cases which haven’t been re-

ported by the finical institutions. Most financial institutions

simply refund their customers without publishing the occur-

rence of a fraud (e.g. [4]). This is presumably done because the

financial institutions want to avoid the bad publicity that comes

along with this kind of press releases.

Modern security mechanisms (like mobileTAN) are success-

fully attacked by fraudsters [5]. mobileTAN is broadly used in

the online banking business to secure transactions using a sec-

ond channel, the user’s smartphone. In 2014 56% of all online

banking users in Germany used mobileTAN [6]. mobileTAN is

a mechanisms that sends a SMS to the user’s smartphone when

the user wants to perform a transaction. The SMS contains aside

the transaction data a transaction number (TAN) which is used

to authorize the transaction [7]. Nowadays, this mechanism is

broken by infecting the user’s smartphone and stealing the au-

thorization SMS allowing the attacker to automatically perform

any transaction if she has access to the user’s online banking

account [5].

Successful attacks on online banking systems are enabled by

Man-in-the-Browser (MitB) attacks [8]. A MitB attack allows

the attacker to get full control over the user’s browser giving

her the opportunity to control all data sent from the server to the

user and vice versa. This results in giving her full control over

the website’s presentation on the user’s device. For example the

attacker could manipulate the payee’s account number that is

sent to the banking server but still display the account number

the user originally entered. To avoid this, a second channel is

needed to verify the data the finical institution received since

the user can’t trust the display of his own device. If the second

channel is successfully attacked, the entire system is broken.

In this work we introduce a protocol which allows the user to

perform a transaction on an infected device without the need of

an external ‘trusted display’ (e.g. a smartphone). The protocol

ensures - with a high probability - that the attacker cannot ma-

nipulate the transaction without the user or server noticing. We

adapt the principals of CAPTCHAs (Completely Automated

Public Turing Test To Tell Computers and Humans Apart) [9]

to the given problem (see section II).

CAPTCHAs have been developed to decide whether an appli-

cation is used by a human or a computer program. In order to

do so the user has to solve a task that should be easy to solve

for humans but hard for computer programs.

We alter this approach by adding context sensitive information

to the CAPTCHA to secure a transaction. The user has to an-

swer an automatically generated question that is related to the

transaction that he wants to perform. The idea behind this ap-

proach is if an attacker manipulates a transaction, there are two

possible scenarios: (1) If the attacker modifies the user’s view,

the answer to the question won’t be the answer the server ex-

pects (section VI) since it is the answer to the original transac-

tion. (2) If the attacker doesn’t manipulated the user’s view, the

user notices the manipulation since the wrong information are

displayed.

Obviously the attacker will try to guess the correct answer to

surpass the security mechanism.

Possible attacks on the system are discussed in section IV of

this paper. A security inspection of the system, based on the

expected attacks, is done in section VI. A very important part

in the IT-security world is the acceptance of a security mecha-

nism by the users. Therefore, we conducted a small usability

Riddle me this! Context Sensitive CAPTCHAs

Tobias Urban1, René Riedel1, Ulrike Schmuntzsch2, Norbert Pohlmann1, and Matthias Rötting2
1Institute for Internet-Security, Westphalian University of Applied Sciences, Gelsenkirchen

{urban | riedel | pohlmann}@internet-sicherheit.de
2Human-Machine-Systems, Berlin Institute of Technology, Berlin

{ulrike.schmuntzsch | roetting}@mms.tu-berlin.de

2

study (𝑛 = 30) of our developed system. The results of the

study are discussed in section VII.

The main contributions of this work are:

 We present an adaptation of the widely used

CAPTCHA mechanism and apply it to online transac-

tions.

 We introduce a protocol which allows users to perform

secure online transactions even if the system they use

is infected with malware.

 We discuss the usability and security of our introduced

approach.

II. THE PROBLEM

If one wants to perform secure online transactions most of the

occurring problems can be sorted into three main categories.

These are on the one hand technical security problems that are

currently abused by attackers and on the other hand limitations

that occur due to the tensions between security and usability.

A. Stolen login information

If an attacker wants to gain control over a user’s account, it is

inevitable to steal the user’s login information. Nowadays, al-

most every web-application uses the combination of username

and password in order to authenticate its’ users. Hence, attack-

ers need to steal the username and password to gain access to

the user’s account.

B. Manipulating the transactions

The main problem if one wants to perform online transactions

on a device that is infected with specialized malware is that the

attacker gains total control over all information that are pro-

cessed by the browser. Thus, the attacker can manipulate all in-

formation displayed in the browser (e.g. account balances or the

destinations of a transaction). The attacker can add, modify, or

delete content just as she pleases [8]. This is utilized by the at-

tacker to perform sophisticated social engineering attacks to

steal sensitive information from the user (e.g. the cell phone

number) [10]. Data send to the server, usually via HTTPs mes-

sages, can be manipulated by the attacker with only very little

chance of the user to notice. Note that all manipulations are pos-

sible even if the client and server communicated via a correctly

established, state of the art TLS connection because the manip-

ulations take place after/before the content is decrypted/en-

crypted on the client. As a result of this problem the user cannot

check if the server received the information the user intended to

send and vice versa.

C. Trusted Display

Several problems emerge from the problem stated above. One

solution to this problem is using a second independent commu-

nication channel as ‘trusted display’ (e.g. a smartphone). This

display can be used to check the data received by the server.

Online banking applications all over the world use a

smartphone, an external card reader, or TAN-generators (these

generate transaction specific TANs) as trusted displays [11–

13]. Card readers and TAN-generators offer a huge security im-

provement since the attacker cannot install any malware on

these devices. In a practical environment these devices lack of

mobility and are mostly used at home. Due to this fact a lot of

users prefer to use their smartphone which can be attacked more

easily [6]. Successful attacks on smartphones are carried out

more and more often by attackers which means that the secure

channel is broken more often [5].

III. CONCEPT

The protocol we introduce in this paper uses aside a digital iden-

tity no further entities (software or hardware), and could there-

fore be used on any device with an installed web browser. This

includes devices that are not fully trustworthy or infected with

specialized banking malware.

From now on in this paper we use online bank wire transfers as

example of online transactions and describe our approach ac-

cording to this example. In general the protocol can be used for

any online transaction (e.g. shopping in an online shop).

A. Usage of digital identities

Within the protocol we use a digital identity to authenticate the

user (2-factor-authentication) and to authorize the transaction

by signing it digitally. An authentication with username and

password is also possible but the 2-factor-authentication pre-

vents the usage of a stolen username and password to authenti-

cate the user. The transaction is digitally signed using the digital

identity to protect it cryptographically and to authorize it. We

cannot assume that a digital identity comes with a trustworthy

display to verify the transaction data. Therefore, another trust-

worthy way to check the transaction data is needed. In this work

we introduce a CAPTCHA like question that refers to the trans-

action. The user needs to answer the question to authorize the

transaction. The question is explained in more detail in section

III.B. Thus, the transaction is secured by answering the question

and a digital signature. Since physical interaction with the iden-

tity is needed to create the signature it is ensured that an attacker

cannot create his own transactions and answer the questions

semi automatically once the user logged into his account.

Examples for digital identities that could be used for our ap-

proach are electronical identity cards (e.g. the German or Esto-

nian identity card) or the YubiKey Token [14]. Credit or debit

cards (if they support NFC) could also be used for this purpose.

In general all digital identities can be used if they support 2-

factor-authetication and digital signatures.

B. Adaption of the CAPTCHA principle

As stated above the user cannot trusted the display of his device.

In order to create a trustworthy display we adapted the

CAPTCHA principle. In order to authorize a transaction the

user has to perform two tasks. The first task is to answer the

automatically generated question. The second task is signing

the transaction digitally. The question consists of two different

types of information (1) information the user needs to answer

the question and (2) information that make it harder for the at-

tacker to parse and understand the question automatically (Ex-

ample: Add the 3rd number and the 4th number of the account

number. The subtraction of the 8th number from the 5th is not

of any interest.). It can be assumed that the attacker has no ac-

cess to the web-application (or its server), and therefore cannot

influence the result the server expects. Hence, an attack is only

successful if the attacker can determine the answer to the ques-

tion (this scenario is discussed in section VI).

When generating the question it is inevitable to refer directly to

parts of the transaction that will most likely be manipulated and

3

which are most important to perform the transaction (e.g. the

payee’s account number). In the upper example the question is

directly tied to the payee’s account number which ensures that

it cannot be manipulated without changing the answer the

server expects. Only if the manipulated account number has the

same numbers at the relevant digits our approach has no effect.

The probability for this scenario is 2% ((1 10⁄ ∗ 1
10⁄) ∗ 2).

The account number was chosen since a manipulation of the

payee’s account number is the only way to transfer money to an

account the attacker controls.

Our approach does not protect every part of the transaction.

Only if one would construct a question that refers to all parts of

the transaction the whole transaction would be secured. An im-

plication of this fact is that an attacker might manipulate some

parts of the transaction (e.g. the amount or reference) without

the user noticing it. Ultimately this implies if the questions are

stated as above, the user can only be sure that the payee was not

manipulated. If the question would relate to more parts of the

transaction these parts would also be protected but the question

would become more complex which would presumably result

in a significant decrease of the system’s usability. Including the

payee in the question implies that the attacker cannot transfer

money to an account she controls. This is in contrast to current

solutions where the attacker can transfer money to any bank ac-

count she controls. Since the possible financial gains are low-

ered for the attacker her motivation to attack the system is also

reduced. A detailed security analysis is presented in section VI.

To support the user four different potential solutions to the

question are presented. Hence, answering the question is a mul-

tiple choice ‘test’. The potential solutions are chosen in a way

that these candidates are possible solutions to the confusing

numbers in the question (see section V). This is done so that the

attacker can’t conclude anything about the question from the

presented answers. Example: If the question names the numbers

3, 4, and 8 there are different tasks that can be generated using

these numbers (e.g. 3 + 4, 8 − 4, etc.). Each potential solution

should be the solution to one of these tasks. By choosing the

solutions in this way the attacker cannot exclude any of the pre-

sented solutions, since all of them fit to a potential task for the

given question. Offering potential solutions has the upside that

if the transaction was manipulated, the correct solution might

not be among the presented solutions. This increases the sys-

tem’s security since the user can abort the transaction if no cor-

rect solution is presented to him.

The reason why exactly four potential solutions are presented

and which influence the amount of potential solutions has on

the security of the system is discussed in section VI.

The schematic process flow of our protocol is shown in Figure

1 and is described briefly in the following. After a successful 2-

factor-authentification against the web-application (1) the user

creates the transaction (2). The web-application generates a

question for the transaction and sends it to the client (3). The

question is displayed on the user’s device and the user solves

the question (5). Afterwards the user signs the transaction digi-

tally (6). In the last step the web-application checks the answer

(7a) and the digital signature (7b). If both are correct, the trans-

action is executed.

Figure 1 – Schematic process of the protocol

By combining a digital identity and a question, which is gener-

ated for a specific context, it is assured that only the person who

physically holds the digital identity can perform a transaction.

If the transaction was manipulated, either the user or server can

detect it. This allows the user to perform transactions even if the

used device is untrusted or infected.

The attacker, or someone he hired (e.g. a “captcha solving com-

pany” [15], or persons from low-cost countries), could solve the

questions by hand. But since the question has to be solved just

in time and due to the fact that there might be some language

barriers the system would still increase the attacker’s efforts

greatly to successfully attack it. Note that our system targets

large scale fraud. An attacker monitoring one transaction in real

time has greater chances to successfully attack the system.

IV. THREAT MODEL

Before conducting the security inspection we define the attack

model which is used as basis for the inspection. We make the

following assumptions about the attacker:

(A1) The attacker cannot automatically parse and under-

stand the question. The automated understanding of

human langue is up till now still a hard problem (see

section VIII or for example [16]). Especially Wino-

gard questions [17] are still hard to understand for

computer programs.

(A2) The attacker is capable of extracting all words and

numbers from the question without understanding

their context.

(A3) The questions are not generated by a small set of pat-

terns. Thus, the attacker cannot learn these few pat-

terns and try to answer the questions based on that (see

also section IX.A).

(A4) The System only uses addition and subtraction in the

generated questions/tasks. This is assumed to keep the

tasks easy to solve for humans.

(A5) The attacker has no access to the server side web-ap-

plication. If the attacker could manipulate the server

there would be no need to attack the client since she

can manipulate the transaction on the server.

Based on this assumptions the following attack vector on the

introduced protocol is expected.

A. Expected attack vector on the protocol

A transaction can only be manipulate by the attacker if and only

if he can present the correct answer to the server and if the user

signs the transaction, optimally by physical interaction with the

identity. To successfully break the introduced mechanism the

attacker has to compute the answer to the question. The attacker

4

can use different resources that help him to do that. These re-

sources are:

(I1) Single words and numbers she extracted from the

question (see A1).

(I2) All information the user entered for the original trans-

action (e.g. account number and amount).

(I3) All information about the manipulated transaction.

(I4) The user’s answer to the original transaction, if avail-

able.

Figure 2 – Schematic display of the expected attack

After receiving the question the attacker can extract the n digits

from the account number (I1). With these n digits the attacker

can identify the n numbers, from (I3), that are candidates to

solve the question. Remember that there are some numbers in

the question to confuse the attacker. Based on these n numbers

3 ∗ (
2
𝑛

) different tasks can be generated (2 ∗ (
2
𝑛

) subtractions

and (
2
𝑛

) additions). Since all presented potential solutions in the

multiple choice test match at least one of those tasks the attacker

cannot unambiguously identify the correct solution. But with

the information from (I2) the attacker could present potential

solutions that would fit to the original transaction. If the user

chooses one of these answers the attacker gets new information

that she can use to solve the task (I4). Figure 2 illustrates the

expected attack on the question.

In order to reduce the information the attacker gains from the

question’s text the text could be distorted (like classical CAP-

TCHAs – see Figure 5). Thus, it is harder for the attacker to

automatically extract the information. This is not a reliable way

since many CAPTCHAs have already been broken (e.g. [18])

but raises the effort of the attacker. Distorting the text also de-

creases the usability of the question.

V. QUESTION GENERATION

Given the presented attack vector it is essential that the attacker

can extract as few usable information as possible from the ques-

tion. In this context a question can be defined as the following

tuple Q = (𝐹, 𝑃, 𝑆𝐶 , 𝑇) with 𝐹 = (𝐹1; 𝐹2; … ; 𝐹𝑘) different fake

solutions, 𝑃 = (𝑃1; … ; 𝑃𝑛) different positions that refer to the

transaction, 𝑆𝐶 the correct solution, and 𝑇 the question’s text.

To compute these four parameters Algorithm 1 is used. First the

algorithm chooses n random digits from the given account num-

ber K. 𝑆𝐶 is computed by choosing a random arithmetical oper-

ator ⊗ and the first two chosen numbers (at the chosen digit).

Subsequently the possible fake solutions for the given account

number and chosen digits are computed. This ensures that all

fake solutions are solutions for at least one task. As mentioned

above this is done to reduce the information the attacker can

gain from parsing the presented potential solutions.

In the last step the question’s text is generated by using the de-

termined values. When choosing the question’s text it is neces-

sary that different verbalizations are used so that the attacker

cannot predict the structure of the question. See also section IX

for further improvements.

Algorithm 1 – Question generation algorithm

The following example shows exemplary the generation of a

question. Input: account number 𝐴 = 15324. The following

potions are chosen at random: 𝑃 = 0, 4, 2, 1, 3 the solution

𝑆𝐶 is 1 + 4 = 5 the following shortened list of fake solutions

is determined 𝐹 = 3, 7, −2, −3. With these parameters the

question can be crafted: Add the 1st and 5th digit of the account

number. The subtraction of the 3rd and 2nd digit are not of any

interest.

VI. SECURITY INSPECTION

In this section we compute the probability by which a motivated

attacker can successfully attack the proposed protocol. The fol-

lowing assumptions are made for the computation of the prob-

ability:

(S1) The question is only related to the account number.

(S2) The question contains five digits from the account

number.

(S3) Only additions and subtractions occur in the questions

(see (A4)).

The probability that the manipulated account number has the

same numbers at the relevant digits and therefore the attacker

can simply adopt the solution is 2 ∗ (1
10⁄ ∗ 1 10⁄) = 0.02 for

addition, the order of numbers doesn’t matter, and 1
10⁄ ∗

1
10⁄ = 0.01 for subtraction.

We consider two different attacker types and estimate their abil-

ity to automatically solve the question: (1) Simple attacker: the

attacker has not extracted any information from the question,

and (2) Specialized attacker: the attacker extracted the relevant

digits from the question.

A. Simple Attacker

The simple attacker has not extracted any information from the

question and therefore the attacker can only blindly guess the

correct answer. For each k-digit account number (
𝑘
2

) + 2 ⋅

(
𝑘
2

) = Ω different tasks can be generated. (
𝑘
2

) additions and 2 ⋅

(
𝑘
2

) substractions. The probability that a solution is unambigu-

ous related to the question is:
𝑛

Ω
 (with 𝑛 the amount of unique

5

solutions for an account number). A solution 𝜖 is unique if there

is only one task in Ω that has 𝜖 as solution. Example: With 𝑘 =

18 and 𝑛 = 6 we get
6

459
= 0.013. To compute the total proba-

bility that an unambiguous question is proposed we need to de-

fine the function 𝜋(𝑗) that returns the amount of account num-

bers that have exactly j unambiguous questions. The probability

that an unambiguous task is selected is computed using the

function 𝜎(𝑗) ≔
𝑗

Ω
. Combined with the percentage occurrence

of an n-digit number with j unambiguous solutions (𝜔(𝑗) ≔

𝜋(𝑗)

10𝑘) the weighted probability can be computed as fol-

lows: 𝜔(𝑗) ⋅ 𝜎 (𝑗). Note that this is the probability that an un-

ambiguous task is selected if an account number has j different

unambiguous tasks. Thus, the total probability that an unambig-

uous question is selected can be computed by summing all

weighted probabilities ∑ 𝜎(𝑗) ⋅ 𝜔(𝑗)𝑗 .

We computed the total probability that an unambiguous task is

chosen for 𝑘 = 18.We chose k = 18 so that we can compute

𝜋(𝑗) in a reasonable time while still using a realistic account

number length. European account numbers are between 15 and

32 digits long [19]. The probability of choosing an unambigu-

ous task, for 𝑘 = 18, is almost zero (0.02%). The extreme large

amount of different tasks is mostly responsible for this low

probability. It must be assumed that the probability will de-

crease if k increases since the number of considered digits in-

creases.

The function 𝜋(𝑗) is computed using Algorithm 2. The array

accountNumber contains the occurrence of all numbers in a

given account number (e.g. account number = 100333 → ac-

countNumber = [2, 1, 0, 3, 0, 0, 0, 0, 0, 0]. Thus, the account

number contains two zeros, one one, no two and three threes.

The algorithm fills the array solutions in a way that it contains

the amount of how often a solution appears for the given ac-

count number. Thereby, solutions[0] represents the smallest po-

tential solution (-9) and solutions[27] represents the biggest po-

tential solution (18). For the previous example we get: account

number = 100333 → accountNumber = [2, 1, 0, 3, 0, 0, 0, 0, 0,

0] → solutions [0, 0, 0, 0, 0, 0, 4, 2, 2, 5, 4, 2, 8, 2, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0]. Therefore, the following solutions exists:

(-3) → 2 times; (-2) → 2 times; (-1) → 2 times; 0 → 5 times; 1

→ 4 times; 2 → 2 times; 3 → 8 times 4 → 2 times and 6 → 1

times. In order to compute all solutions Algorithm 2 iterates

over the accountNumber array and multiples the occurrence of

the given numbers (e.g. If the account number contains three

threes and one 1 we get 3 ∗ 1 = 3 times the result

 3 + 1 = 4). Accordingly, we get 3 times the solution 3 − 1 =
2 and 1 − 3 = −2. After termination 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠[𝑗] = 𝜋(𝑗) ap-

plies.

B. Specialized attacker

We assume that the specialized attacker parsed the question and

extracted all digits of interest but didn’t understand the context

in which they were mentioned. The attacker also sniffed the an-

swer the user send to the bank. Thus, the attacker knows 𝑃,

which she extracted from 𝑇, and sniffed 𝑆𝐶 for the original

transaction. Using these information the attacker has a much

higher probability to break the system. The total probability that

a question is chosen to which the attacker can determine the

correct answer can be compute as follows. Since the attacker

could extract all five positions of interest from the question (S2)

the amount of possible tasks shrinks drastically. There are only

Ω = (
5
2

) + (
5
2

) ∗ 2 = 30 different tasks in this scenario.

Analogously to the computation of total probability for the sim-

ple attacker we get a total probability of 21.07% that this at-

tacker can successfully attack the system.

Algorithm 2 – Determines all solution for a given account number.

This is the probability that the attacker can identify the question

based on the given information. As expected the probability that

a transaction can be attacked successfully rises drastically. But

around 4
5⁄ of all transactions could still be executed safely

even if the user’s system was infected by the attacker.

A highly motivated attacker will also try to learn more about

the structure of the generated questions in order to increase her

chances to find the correct answer. To counter this either the

questions have to be more challenging, which would negatively

affect the usably of the system, or the question has to be gener-

ated in a way that makes it harder for computer programs to

interpret. Examples for such question are so called Winogard

questions [17]. Winogard questions are multiple choice ques-

tions that consist of two sentences that contain an ambiguity

that is resolved in opposite ways (see section IX). It can be as-

sumed that these kind of questions wouldn’t increase the cog-

nitive workload of the user since the ambiguity in Winogard

questions is resolved by common world knowledge that humans

naturally have.

C. Adding multiple choice questions

As mentioned in section III the user has to choose the correct

answer in a multiple choice like test. The security impact of us-

ing such a test is presented in this section. In this section we

focus mainly on the security gain by using such a test rather

than the user experience. The main advantage of a multiple

choice test is that the correct solution to the question might not

be presented to the user if the transaction was manipulated. In

this case the user can abort the transaction and prevent that any

damage is done. Obviously the solution might randomly be

among the presented potential solutions. Therefore, it is crucial

to decide how many potential solutions should be presented to

the user. We still assume that the attacker extracted the five rel-

evant digits from the question.

Let j be the amount of different solutions for a 5-digit number

and let k be the amount of displayed solution candidates

(with 1 ≤ 𝑘 ≤ 28). Since the attacker knows the five relevant

digits the amount of different solutions for a 5-digit number

6

needs to be computed. Essentially the question: “How many

different solutions has a 5-digit number” needs to be an-

swered. We found no 5-digit number with 𝑖 > 18.

Let 𝜋%(𝑖) be the function that returns the percentage amount

of 5-digit numbers that have j different solutions. In the fol-

lowing we compute the probability that the correct solution for

the original transaction is among this k pictures.

The probability that the correct solution is not displayed can be

computed using 𝛿(𝑘): = max(
𝑗−𝑘

𝑗
; 0). For a 5-digit number

with exactly j solutions and k displayed pictures the formula

𝛿(𝑘) ∗ 𝜋%(𝑖) computes the probability that the solution for the

original transaction is not displayed. The total probability that

the solution for the original transaction is not displayed can be

computed as follows: 𝜑(𝑘): = ∑ 𝛿(𝑘) ∗ 𝜋%(𝑖)𝑖 . The probabil-

ity that the attacker can simply guess the correct solution can be

computed using ℎ(𝑘) =
1

𝑘
 .

The probability that the user chooses a solution and digitally

signs the transaction, when the transaction was manipulated,

can be computed using the function 𝑓(𝑘) = max(1 −

𝛿(𝑘); ℎ(𝑘)). In order to increase the security of the system we

need to minimize 𝑓(𝑘) for all k (min ⋂ f(k)𝑘).

Figure 3 displays the curves of the functions ℎ(𝑘) (), 1 −
𝜑(𝑘) (), and 𝑓(𝑘) (). 𝑓(𝑘) reaches at 𝑘 = 4 its

absolute minimum with 𝑓(4) = 0.25 at the point of itersection

of ℎ(𝑘) and 𝜑(𝑘). The curve 𝑓(𝑘) () displays depending

on different values of k the probability that the correct solution

is displayed – if the transaction was manipulated.

By combining the probability that an attacker can determine the

correct solution (21.02%), and the probability that the user an-

swers the question (25%) we get an overall probability of

5.93% (0.25 ∗ 0.2102 = 0.0593) that the attacker will suc-

cessfully attack the system.

D. Limitations

Presumably the attacker controls multiple accounts to make it

more difficult to track him and to lower his damage, if an ac-

count gets closed by authorities. This does not directly affect

the security of our proposed system since the attacker has to

choose which account he uses before the question is generated.

To increase her chances to successfully attack she could choose

an account number that is similar to the user’s account number.

In other words it has multiple equal numbers at different digits

(e.g. if 4 out of 18 numbers are equal there is a chance

of 4 18⁄ = 0. 2̅ that these digits are chosen).

Our proposed system only protects the payee’s account number.

Thus, if the attacker could lure the victim into transferring a

small amount of money to an account she controls she could

change this small amount into a much bigger amount. However,

in the wild we see that if the attacker convinced the user, using

sophisticated Social Engineering attacks (e.g. [5]), to transfer

money to an account she controls the user would also transfer

larger amounts. In this scenario the attacker manipulates the

website in a way that the user thinks the he falsely received

money from a “credible” source (e.g. the customs office). These

manipulations go as far as manipulating the account balance,

transaction history, and ‘disabling’ all functions of the website.

The attacker prompts that the user has to transfer the money

back to an account of the “credible” source in order to be able

to use his online banking system again.

Our proposed system doesn’t protect against this attack vector

because the user intentionally transfers the money since he was

tricked into doing so. Also in this scenario the attacker doesn’t

has to manipulate the transaction amount because the user trans-

fers the money intentionally.

Figure 3 – pr. to successfully attack the system.

VII. USER STUDY

Besides the security inspection we also conducted a user study

of the proposed system. Therefore, we implemented a prototyp-

ical online banking environment that uses the proposed concept.

30 experimental subjects (15 men and 15 women) participated

in our user study. The subject group consisted of three different

age brackets: 16-29 (young), 30-49 (mid), and 50-69 (old).

Each group consisted of 10 different subjects. The mean aged

of our subjects is 38.68 years. When choosing the subjects we

made sure that they are familiar with online banking. 20 out of

30 subjects stated that they use online banking at least once a

week. 80% of the subjects hold at least a high school diploma.

During the study we used two different scenarios (1) not ma-

nipulated transactions and (2) manipulated transactions, mean-

ing that the correct solution was not displayed. The aim was to

check if the subjects would notice the manipulation. Only 15 of

the subject where informed that manipulations might take place

during the experiment and how the questions might help to pre-

vent fraud. The questions where displayed in two different

ways: as simple black continuous text (“black” – see Figure 4);

and as distorted text in different colors (”color” – see Figure 5).

Note that the account number was divided into blocks to make

it more readable for the subjects. Each subject had to solve two

questions of each type. One question related to a manipulated

transaction and the other transaction to a normal transaction.

The order of all four questions was randomized for each subject.

7

Figure 4 – simple black continuous text

Figure 5 – Distorted question

One used metric was to determine how many subjects could

solve the question on their first try without any help. Figure 6

shows that 80% of the subjects could solve the “black” question

on their first try. Older people had bigger problems solving the

question than younger people.

The different scenarios have a significant impact on the time the

subjects needed to complete or abort a transaction. The results

are listed in Table 1. All timings are the timings for the whole

transaction process, starting from entering the transaction de-

tails.

 black color

not manipulated 30s 37s

manipulated 48s 52s
Table 1 – Timings of the two scenarios

To measure the subjective stress of the subjects we used the

NASA-TLX Score [20]. The NASA-TLX Score is a widely

used, multidimensional scale which measures the workload of

human agents performing a given task. After determining the

NASA-TLX score we found that the colored question was rated

subjectively to be mentally more challenging than the black

question (black question: 4.20 vs. colored question: 5.25).

Figure 6 – Percentile amount of subjects that solved the question on

their first try

VIII. DISCUSSION

Finally, 73% of the subjects could imagine completing every

online banking transaction with a CAPTCHA like question.

However, nearly all subjects wished for more information about

the associated increase in security. As a main disadvantage of

the question that was mentioned by the subjects is the time re-

quirement. In this specific user study 70% of the subjects criti-

cize the wording of the question as overly complicated. Further-

more, subjects complained about the poor legibility of the dis-

torted text in different colors which leads to unrecognized char-

acters. Consequently, 90% of the subjects preferred the black

question since it was seen as more user-friendly.

Generally, this user study showed that further development

should focus on the simplification of the question and to inform

user information about recognizing a manipulation and how to

deal with one. To the latter, it would help to implement a “right

answer is not available”-button since users have inhibitions to

cancel a transaction. Another advantage would be that users do

not necessarily have to understand that a phishing attack took

place but just realize that the right answer is not available and

the system itself would take care of everything else. Implement-

ing a “right answer is not available”-button seems to be useful

in two ways. On the one hand, it demonstrates users the oppor-

tunity that the right answer might be not available which then

eliminates the inhibition to press a “cancel”-button. On the

other hand, it bypasses the problem that users more carefully

read the answers than explanatory text.

Apart from recognizing and dealing with manipulation further

development should focus on the simplification of the question.

As mentioned, users find the distorted text in different colors

extremely complicated and very difficult to read. Moreover, be-

cause of the loud colors and distortion it appears dubious to us-

ers and provokes erroneous input. Furthermore, it contradicts

the principle of accessibility for people with defective vision

such as color-blindness. Consequently, a strong majority wishes

for simple black text. Apart from the distorted color design, user

criticize that two of the three sentences where in their view

needless and therefore distracting. Furthermore, it was difficult

to subtract, especially for younger users. So users wish for an

easier wording and a summation instead of a subtraction.

IX. FUTURE WORK

The security of the proposed system mostly relies on questions

that cannot be answered by computer programs but intuitively

by humans. Thus, questions should be selected that are hard for

computer to parse and interpret. Due to this, questions that are

based on the Winogard Shema [17] or the Pronoun Disambigu-

ation Problem (PDP) should be used. Winogard questions are

multiple choice questions that consist of two sentences that con-

tain an ambiguity that is resolved in opposite ways. Example

(borrowed from [16]):

The trophy doesn’t fit in the brown suitcase because it’s too

[big/small]. What is too [big/small]? Answer 0: the trophy -

Answer 1: the suitcase.

In this case the word big refers to the trophy but the word small

refers to the suitcase. In order to answer such questions one

needs to do some common sense reasoning and needs to have

some “world knowledge”. Winogard questions have been pro-

posed by Levesque in [16] as an alternative to the Turing test.

Answering Winogard questions is up till now an open and un-

solved AI problem [21–23].

PDPs resemble Winogard questions but are more general. They

consist of at least one pronoun which has at least one ambiguous

relationship in the sentence. Example (borrowed from [24]):

8

Do you suppose that Peter is responsible for the captain’s ill-

ness? Maybe he bribed the cook to put something in his food.

Snippet: "he bribed the cook" Answers: (a) Peter (b) the cap-

tain

To improve the systems’ security the used questions should fol-

low the Winogard or PDP schema. Obviously these question

still need to reference the transaction.

Also the usability of the system should be improved based on

the results and feedback of the user study. The improved inter-

face should be tested for suitability for daily use in a longitudi-

nal field study. This study would also investigate the ability of

users to answer the improved questions which follow the Wino-

gard schema.

A. Generating more complex questions

Automated crafting of Winogard or PDP questions is crucial for

system’s security. However the generation of these questions

that include arithmetical operations is not straight forward. Ex-

ample 1 gives a simple example how such questions could look

like. Basically a Winogard question is extended by the two tasks

and the answer is determined by the answer to the Winogard

question. This mechanism can be used for all Winogard ques-

tion. Thus, there is a broad variety of different questions that

are hard to parse for computers.

Example 1: Frank and Bill took part in an al-

gebra competition.

Frank had to compete 𝑎 + 𝑏 and felt [vindi-
cated/crushed] when his longtime rival

Bill, who had to compute 𝑐 + 𝑑, revealed

that he was the winner of the competition.

Question: What is the solution computed by

the winner of the competition?

An example how to alter a PDP that is given in Example 2. Ex-

ample 2 also gives an idea how this type of questions might be

used in different areas.

Example 2: Babar wonders how he can buy new

clothing and get them delivered to A. Luck-

ily, a very rich old man understands right

away that he is longing for a fine suit. As

he likes to make people happy, he buys a

new suit but mistakenly delivers it to B.

Question: Should your order be delivered to
the address the person used [who likes to

make people happy / is longing for a fine

suit]?

X. RELATED WORK

Breaking CAPTCHAs. The idea of using CAPTCHAs in an

online banking environment is not new. In the past a transaction

number was placed in a picture, the CAPTCHA, and sent to the

client. These pictures also contain the transaction data and

sometimes some personal information about the user. The pic-

tures have been distorted so machines cannot read them, the

basic idea of CAPTCHAs. Successful attacks on such systems

have been presented [25]. Li et al. use image recognition algo-

rithms in order identify the parts of the image that relate to the

transaction and manipulate these parts. Our approach bypasses

this attack since the attacker has to understand the question in

order to manipulate it. Also manipulating the question is point-

less since the answer, the server expects, doesn’t change.

In [26] Shirali-Shahreza et al. examine the use of questions in

the CAPTCHA context. Thereby, they used a combination of

pictures and text. The intention was to prevent the CAPTCHA

from pure letter recognition. The difference between these

questions and our approach is that they are not in any relation

to the context they are used in.

There is plenty of work focusing on breaking different CAP-

TCHAs (e.g. [18, 27, 28], [29]). All these papers focus on de-

tecting and identifying objects and letters within different types

of CAPTCHAs. Most of the approaches have very good detec-

tion rates and manage to break most of the examined CAP-

TCHAs. These approaches are not a problem for our proposed

system since the challenge is understanding the question rather

than detecting the letters.

Winogard questions. Levesque examines in [30] the generation

of questions that cannot be understood and answered by state of

the art computer programs. The author uses Winogard questions

[17] as example how hard it is for computer programs to answer

such questions.

The automated answering of questions by computer programs

is an active area of research. To answer general questions most

approaches use huge knowledge databases [31, 32] or results

from search engines [33]. The proposed approach doesn’t allow

to use huge information sources (“big data”) to answer the ques-

tions since there are no public information on the web that will

help to understand and answer them.

Phishing attacks. Mechanisms to avoid password phishing by

shoulder surfing attackers is an active field of research. In [34]

Han Yan et al. present a system that allows users to enter pass-

words - leakage resilient - on mobile devices. Therefore, they

present a hidden messages to the user in order to break the cor-

relation between the password and the interaction observable to

an adversary. The concept of providing hidden information to

the user, in order to prevent password leakage, was introduced

in [35] for pressure sensitive screens. Both approaches present

the hidden information on the screen of the device. This infor-

mation has to be shielded by the user so that the adversary can-

not see it.

Limitations and design principles for systems that do not use a

second channel to communicate a secret between two parties

are discussed by Qiang Yan et al. in [36]. Qiang Yan et al. de-

scribe the tradeoffs between security and usability, for their de-

veloped framework, and conclude that either a high memory

demand or high cognitive workload are unavoidable for users.

Their work also focuses on leakage-resilient password systems.

XI. CONCLUSION

Our presented approach allows to secure a vast majority (>94%)

of online bank wire transfers even if they are done on an in-

fected system. Thus, we reduce the potential financial gains of

the attackers hugely which will ultimately lower their motiva-

tion to attack the system.

As a main result of the user study it can be stated that a strong

majority successfully solved the CAPTCHA and is willing to

use them in order to increase the security of online banking

transactions. Further improvements should address the simpli-

fication of the CAPTCHA and the user information about it. As

9

to the first one, users strongly prefer simple black CAPTCHA

instead of distorted colored ones and an easy wording as well

as summation instead of a subtraction. As to the latter one, it

would be help full to provide additional information and to im-

plement a “right answer is not available”-button since users

have inhibitions to cancel a transaction.

Overall our system increases the security of online transaction

but our prototype lacks of usability and needs further improve-

ment.

XII. ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of

Education and Research under grand 13N13252 and 13N13251

(“BOB”). We want to thank A. Brunstein, J. Conradi, N.

Döllinger, E. Hod, M. Makaranets, C. Pawelke, S. Uhrig, M.

Wenig und R. Zechner for conducting the user study. We would

like to thank R. Widdermann for his efforts developing the

online banking environment. We would like to thank the anon-

ymous reviewers for their helpful and constructive comments

that greatly contributed to improving the final version of the pa-

per. Any opinions, findings, and conclusions or recommenda-

tions expressed in this paper are those of the authors and do not

necessarily reflect the views of the sponsors or supporters.

REFERENCES

[1] 1. Eurostat, the statistical office of the European Union: Individuals us-
ing the internet for internet banking, http://ec.europa.eu/eurostat/tgm/ta-

ble.do?tab=table&init=1&language=en&pcode=tin00099

[2] 2. Mäntymäki, M., Salo, J.: Why do teens spend real money in virtual

worlds? A consumption values and developmental psychology perspec-

tive on virtual consumption. International Journal of Information Man-

agement 35, 124–134 (2015)
[3] 3. Federal Criminal Police Office (Germany): Bundeslagebild Cyber-

crime 2014 2014 (2014)

[4] 4. Lloyds Bank: Our Fraud Guarantee, https://www.lloydsbank.com/se-
curity.asp?WT.ac=OBOSFOM#tab-row-3

[5] 5. Golovanov, S., Makrushin, D. and Monastyrsky, A.: Staying safe

from virtual robbers, https://securelist.com/analysis/user-ad-
vice/58328/staying-safe-from-virtual-robbers/

[6] 6. Initiative D21: Online - Online Banking 2014 Sicherheit zählt!

(GERMAN) (2014)
[7] 7. Commerzbank AG: mobileTAN: Tried and tested, https://www.com-

merzbank.de/portal/en/englisch/products-offers/services/secure-internet-

banking/banking.html
[8] 8. Dougan, T., Curran, K.: Man in the Browser Attacks. International

Journal of Ambient Computing and Intelligence 4, 29–39 (2012)

[9] 9. Ahn, L. von, Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using
Hard AI Problems for Security. In: Biham, E. (ed.) Advances in Cryptol-

ogy - EUROCRYPT 2003. International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,

2003 Proceedings, 2656, pp. 294–311. Springer, Berlin, Heidelberg

(2003)
[10] 10. Abraham, S., Chengalur-Smith, I.: An overview of social engineering

malware. Trends, tactics, and implications. Technology in Society 32,

183–196 (2010)
[11] 11. Australia and New Zealand Banking Group: ANZ security measures,

http://www.anz.co.nz/personal/ways-bank/protect-banking/security-

measures/
[12] 12. Raiffeisen e-force GmbH: The cardTAN, http://www.raif-

feisen.at/oesterreich/1171457369322123440_1171457740299924723-

677938155780761544-NA-30-NA.html
[13] 13. DBS Bank Singapore: DBS iBanking Secure Device,

http://www.dbs.com.sg/personal/ibanking/faq/newtoken.page

[14] 14. Yubico: YubiKey. Trust the Net with YubiKey Strong Two-Factor
Authentication, https://www.yubico.com/

[15] 15. 2Captcha: Human-powered CAPTCHA-solving service, https://2cap-

tcha.com/

[16] 16. Levesque, H.J., Davis, E., Morgenstern, L.: The Winograd schema

challenge. In: AAAI Spring Symposium: Logical Formalizations of Com-
monsense Reasoning, 46, p. 47 (2011)

[17] 17. Winograd, T.: Understanding natural language. Cognitive Psychology

3, 1–191 (1972)
[18] 18. Bursztein, E., Martin, M., Mitchell, J.: Text-based CAPTCHA

strengths and weaknesses. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)

the 18th ACM conference, p. 125
[19] 19. The Society for Worldwide Interbank Financial Telecommunication:

IBAN REGISTRY (ISO 13616). This registry provides detailed infor-

mation about all ISO 13616 - compliant national IBAN formats (2016)
[20] 20. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load

Index): Results of Empirical and Theoretical Research. In: Meshkati, N.,

Hancock, P.A. (eds.) Human Mental Workload, 52, pp. 139–183. Elsevier
textbooks, s.l. (1988)

[21] 21. Peter Schüller: Tackling Winograd Schemas by Formalizing Rele-

vance Theory in Knowledge Graphs, http://www.aaai.org/ocs/in-
dex.php/KR/KR14/paper/view/7958 (2014)

[22] 22. Arpit Sharma, Vo, N.H., Somak Aditya, Chitta Baral: Towards ad-

dressing the winograd schema challenge - Building and using a semantic
parser and a knowledge hunting module. In: IJCAI International Joint

Conference on Artificial Intelligence, vol. 2015-Januaryvol. , pp. 1319–

1325. International Joint Conferences on Artificial Intelligence (2015)
[23] 23. Rahman, A., Ng, V.: Resolving Complex Cases of Definite Pronouns:

The Winograd Schema Challenge. In: Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, pp. 777–789. Association for

Computational Linguistics, Stroudsburg, PA, USA (2012)
[24] 24. Morgenstern, L.: Commonsense Reasoning. Sample Pronoun Disam-

biguation Problems, http://commonsensereasoning.org/disambigua-

tion.html
[25] 25. Li, S., Shah, S.A.H., Khan, M.A.U., Khayam, S.A., Sadeghi, A.-R.,

Schmitz, R.: Breaking e-banking CAPTCHAs. In: Gates, C., Franz, M.,

McDermott, J. (eds.) the 26th Annual Computer Security Applications
Conference, p. 171

[26] 26. Shirali-Shahreza, M., Shirali-Shahreza, S.: Question-Based

CAPTCHA. In: International Conference on Computational Intelligence
and Multimedia Applications (ICCIMA 2007), pp. 54–58

[27] 27. Suphannee Sivakorn, Iasonas Polakis, Angelos D. Keromytis: I Am

Robot: (Deep) Learning to Break Semantic Image CAPTCHAs. In: Pro-
ceedings of the 1st IEEE European Symposium on Security and Privacy

(2016)

[28] 28. El Ahmad, A.S., Yan, J., Marshall, L.: The robustness of a new
CAPTCHA. In: Costa, M., Kirda, E. (eds.) the Third European Workshop,

pp. 36–41

[29] 29. Yan, J., Ahmad, A.S.E.: Breaking Visual CAPTCHAs with Naive
Pattern Recognition Algorithms. In: Twenty-Third Annual Computer Se-

curity Applications Conference (ACSAC 2007), pp. 279–291

[30] 30. Levesque, H.J.: On our best behaviour. Artificial Intelligence 212, 27–
35 (2014)

[31] 31. Qingqing Cai, Alexander Yates: Large-scale Semantic Parsing via

Schema Matching and Lexicon Extension. In: In Proceedings of the An-
nual Meeting of the Association for Computational Linguistics (2013)

[32] 32. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over

curated and extracted knowledge bases. In: Macskassy, S., Perlich, C.,
Leskovec, J., Wang, W., Ghani, R. (eds.) the 20th ACM SIGKDD inter-

national conference, pp. 1156–1165

[33] 33. Kwok, C., Etzioni, O., Weld, D.S.: Scaling question answering to the
web. ACM Trans. Inf. Syst. 19, 242–262 (2001)

[34] 34. Yan, Q., Han, J., Li, Y., Zhou, J., Deng, R.H.: Designing leakage-

resilient password entry on touchscreen mobile devices. In: Chen, K., Xie,
Q., Qiu, W., Li, N., Tzeng, W.-G. (eds.) the 8th ACM SIGSAC sympo-

sium, p. 37

[35] 35. Kim, D., Dunphy, P., Briggs, P., Hook, J., Nicholson, J., Nicholson,
J., Olivier, P.: Multi-touch authentication on tabletops. In: Mynatt, E.,

Schoner, D., Fitzpatrick, G., Hudson, S., Edwards, K., Rodden, T. (eds.)

the 28th international conference, p. 1093
[36] 36. Yan, Q., Han, J., Li, Y., Huijie, R.D.: On Limitations of Designing

Usable Leakage-Resilient Password Systems: Attacks, Principles and Us-

ability. 19th Network and Distributed System Security Symposium

(NDSS) (2012)

